

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  # WASDI

Web Advanced Space Developer Interface



## Develop

### Prerequisites

#### Git

[Download](https://git-scm.com/downloads) and install [git](https://git-scm.com/)

#### Java

Install [Java SE Development kit 8](https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html)

#### Maven


	[Download](https://maven.apache.org/download.html) and [install](http://maven.apache.org/install.html) Maven
- Optional (yet suggested): [get familiar with Maven (in 5 minutes)](https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html)




#### Tomcat


	Download and Install [Tomcat](http://tomcat.apache.org/) [version 8.5](https://tomcat.apache.org/download-80.cgi)




#### Eclipse


	[Download](https://www.eclipse.org/downloads/) and install [Eclipse](https://www.eclipse.org/). Choose the Eclipse IDE for Java EE Developers.


	Setup Eclipse for Maven using the [M2Eclipse plugin](http://www.eclipse.org/m2e/). Here’s an [unofficial guide](http://www.vogella.com/tutorials/EclipseMaven/article.html)


	Install the [Eclipse Web Tools Platform SDK](https://www.eclipse.org/webtools/). Later, you will be able to configure Eclipse for working with Tomcat: here’s a [unofficial (yet useful) guide](https://www.mulesoft.com/tcat/tomcat-eclipse) with an example


	optional Setup Eclipse for git using [egit](https://www.eclipse.org/egit/). [Unofficial guide](http://www.vogella.com/tutorials/EclipseGit/article.html)




#### Mongo DB

WASDI relies on mongo DB. Here you are two possibilities:

1. connect the local version of WASDI to an existing DB server. In this case you would just need a client (suggested: [robo3t](https://robomongo.org/download)) to perform ordinary maintenance
1. install a full fledged MongoDB TODO how to configure Mongo DB

#### snap

Install [snap](./snap.md)



### configure your setup for working with the project

clone the repo:

`
git clone https://github.com/fadeoutsoftware/WASDI.git
`

Then you can build the project.

#### Build with Maven:

`
cd WASDI
cd wrappersnap
cd wasdishared
mvn clean install
cd ../launcher
mvn clean install
cd ../../wasdiwebserver
mvn clean install
`

#### Build with Eclipse:

1. import wrappersnapwasdishared as a maven project
1. import wrappersnaplauncher as a maven project
1. import wasdiwebserver as a maven project

TODO how to configure - attach images of the config

make sure Elicpse uses the jre within the jdk and not another one installed separately: Windows -> Preferences -> Java -> installed JREs



## Deploy


	TODO how to deploy






            

          

      

      

    

  

    
      
          
            
  

** warning - work in progress **

the following instructions are not reliable, use them at your own risk



Make sure to fulfill the [prerequisites](./prerequisites.md) before continuing.

# SNAP

Instructions to download [SNAP](https://senbox.atlassian.net/wiki/spaces/SNAP/pages/10879039/How+to+build+SNAP+from+sources) and sentinel toolboxes 1-3 in a directory (assume it is called snap), and build them. In details:

create a directory and cd into it:

`
aPath/ $ mkdir snap
aPath/ $ cd snap
`

## Snap core packages

### Snap engine

`
aPath/snap/ $ git clone https://github.com/senbox-org/snap-engine
aPath/snap/ $ cd snap-engine
aPath/snap/ $ git fetch --all
aPath/snap/ $ git checkout tags/6.0.0
aPath/snap/snap-engine/ $ mvn clean install
`

### Snap desktop

`
aPath/snap/ $ git clone https://github.com/senbox-org/snap-desktop
aPath/snap/ $ cd snap-desktop
aPath/snap/ $ git fetch --all
aPath/snap/ $ git checkout tags/6.0.0
aPath/snap/snap-desktop/ $ mvn clean install
`

[back to Snap core packages](#snap-core-packages)

## Sentinel toolboxes

Clone the repositories of the toolboxes 1-3

`
aPath/snap/ $ git clone https://github.com/senbox-org/s1tbx.git
aPath/snap/ $ git clone https://github.com/senbox-org/s2tbx.git
aPath/snap/ $ git clone https://github.com/senbox-org/s3tbx.git
`

Then build the projects in the same order. The general procedure is:

```
aPath/snap/ $ cd s#tbx
aPath/snap/ $ git fetch –all
aPath/snap/ $ git checkout tags/6.0.0
aPath/snap/s#tbx/ $ mvn clean install

```
Just make sure to replace the character # above with the appropriate digit, i.e, 1, 2, or 3

Note: according to the developers, builds may fail because of unit tests failing (in fact, that happened consistently in our tests). If that is case, just replace the build above command with

`
aPath/snap/s#tbx/ $ mvn clean install -DskipTests=true
`

to skip the tests (the latter worked smoothly in our tests): you’re just going to use the toolboxes, not contributing to them. Also, please report the incident on the appropriate ESA’s forum: [s1tbx](https://forum.step.esa.int/c/s1tbx/problem-reports), [s2tbx](https://forum.step.esa.int/c/s2tbx/problem-reports) and [s3tbx](https://forum.step.esa.int/c/s3tbx/problem-reports)

[back to Sentinel toolboxes](#sentinel-toolboxes)

## PROBA-V toolbox

Finally, install the PROBA-V toolbox:

`
aPath/snap/ $ git clone https://github.com/senbox-org/probavbox.git
aPath/snap/ $ cd probavox
aPath/snap/ $ git fetch --all
aPath/snap/ $ git checkout tags/2.0.0
aPath/snap/probavox/ $ mvn clean install
`

[back to PROBA-V toolbox](#proba-v-toolbox)

## Snap desktop tool

Download and install the [SNAP desktop tool](http://step.esa.int/main/download/)



You’re done!
Now [go back](./README.md) and follow the instructions to setup your working environment.



            

          

      

      

    

  

    
      
          
            
  # angular-seed — the seed for AngularJS apps

This project is an application skeleton for a typical [AngularJS](http://angularjs.org/) web app.
You can use it to quickly bootstrap your angular webapp projects and dev environment for these
projects.

The seed contains a sample AngularJS application and is preconfigured to install the Angular
framework and a bunch of development and testing tools for instant web development gratification.

The seed app doesn’t do much, just shows how to wire two controllers and views together.

## Getting Started

To get you started you can simply clone the angular-seed repository and install the dependencies:

### Prerequisites

You need git to clone the angular-seed repository. You can get git from
[http://git-scm.com/](http://git-scm.com/).

We also use a number of node.js tools to initialize and test angular-seed. You must have node.js and
its package manager (npm) installed.  You can get them from [http://nodejs.org/](http://nodejs.org/).

### Clone angular-seed

Clone the angular-seed repository using [git][git]:

`
git clone https://github.com/angular/angular-seed.git
cd angular-seed
`

If you just want to start a new project without the angular-seed commit history then you can do:

`bash
git clone --depth=1 https://github.com/angular/angular-seed.git <your-project-name>
`

The depth=1 tells git to only pull down one commit worth of historical data.

### Install Dependencies

We have two kinds of dependencies in this project: tools and angular framework code.  The tools help
us manage and test the application.


	We get the tools we depend upon via npm, the [node package manager][npm].


	We get the angular code via bower, a [client-side code package manager][bower].




We have preconfigured npm to automatically run bower so we can simply do:

`
npm install
`

Behind the scenes this will also call bower install.  You should find that you have two new
folders in your project.


	node_modules - contains the npm packages for the tools we need


	app/bower_components - contains the angular framework files




Note that the `bower_components` folder would normally be installed in the root folder but
angular-seed changes this location through the `.bowerrc` file.  Putting it in the app folder makes
it easier to serve the files by a webserver.

### Run the Application

We have preconfigured the project with a simple development web server.  The simplest way to start
this server is:

`
npm start
`

Now browse to the app at http://localhost:8000/index.html.

## Directory Layout

```
app/                    –> all of the source files for the application


app.css               –> default stylesheet
components/           –> all app specific modules



	version/              –> version related components
	version.js                 –> version module declaration and basic “version” value service
version_test.js            –> “version” value service tests
version-directive.js       –> custom directive that returns the current app version
version-directive_test.js  –> version directive tests
interpolate-filter.js      –> custom interpolation filter
interpolate-filter_test.js –> interpolate filter tests









	view1/                –> the view1 view template and logic
	view1.html            –> the partial template
view1.js              –> the controller logic
view1_test.js         –> tests of the controller



	view2/                –> the view2 view template and logic
	view2.html            –> the partial template
view2.js              –> the controller logic
view2_test.js         –> tests of the controller





app.js                –> main application module
index.html            –> app layout file (the main html template file of the app)
index-async.html      –> just like index.html, but loads js files asynchronously




karma.conf.js         –> config file for running unit tests with Karma
e2e-tests/            –> end-to-end tests


protractor-conf.js    –> Protractor config file
scenarios.js          –> end-to-end scenarios to be run by Protractor




```

## Testing

There are two kinds of tests in the angular-seed application: Unit tests and end-to-end tests.

### Running Unit Tests

The angular-seed app comes preconfigured with unit tests. These are written in
[Jasmine][jasmine], which we run with the [Karma Test Runner][karma]. We provide a Karma
configuration file to run them.


	the configuration is found at karma.conf.js


	the unit tests are found next to the code they are testing and are named as …_test.js.




The easiest way to run the unit tests is to use the supplied npm script:

`
npm test
`

This script will start the Karma test runner to execute the unit tests. Moreover, Karma will sit and
watch the source and test files for changes and then re-run the tests whenever any of them change.
This is the recommended strategy; if your unit tests are being run every time you save a file then
you receive instant feedback on any changes that break the expected code functionality.

You can also ask Karma to do a single run of the tests and then exit.  This is useful if you want to
check that a particular version of the code is operating as expected.  The project contains a
predefined script to do this:

`
npm run test-single-run
`

### End to end testing

The angular-seed app comes with end-to-end tests, again written in [Jasmine][jasmine]. These tests
are run with the [Protractor][protractor] End-to-End test runner.  It uses native events and has
special features for Angular applications.


	the configuration is found at e2e-tests/protractor-conf.js


	the end-to-end tests are found in e2e-tests/scenarios.js




Protractor simulates interaction with our web app and verifies that the application responds
correctly. Therefore, our web server needs to be serving up the application, so that Protractor
can interact with it.

`
npm start
`

In addition, since Protractor is built upon WebDriver we need to install this.  The angular-seed
project comes with a predefined script to do this:

`
npm run update-webdriver
`

This will download and install the latest version of the stand-alone WebDriver tool.

Once you have ensured that the development web server hosting our application is up and running
and WebDriver is updated, you can run the end-to-end tests using the supplied npm script:

`
npm run protractor
`

This script will execute the end-to-end tests against the application being hosted on the
development server.

Note:
Under the hood, Protractor uses the [Selenium Stadalone Server][selenium], which in turn requires
the [Java Development Kit (JDK)][jdk] to be installed on your local machine. Check this by running
java -version from the command line.

If JDK is not already installed, you can download it [here][jdk-download].

## Updating Angular

Previously we recommended that you merge in changes to angular-seed into your own fork of the project.
Now that the angular framework library code and tools are acquired through package managers (npm and
bower) you can use these tools instead to update the dependencies.

You can update the tool dependencies by running:

`
npm update
`

This will find the latest versions that match the version ranges specified in the package.json file.

You can update the Angular dependencies by running:

`
bower update
`

This will find the latest versions that match the version ranges specified in the bower.json file.

## Loading Angular Asynchronously

The angular-seed project supports loading the framework and application scripts asynchronously.  The
special index-async.html is designed to support this style of loading.  For it to work you must
inject a piece of Angular JavaScript into the HTML page.  The project has a predefined script to help
do this.

`
npm run update-index-async
`

This will copy the contents of the angular-loader.js library file into the index-async.html page.
You can run this every time you update the version of Angular that you are using.

## Serving the Application Files

While angular is client-side-only technology and it’s possible to create angular webapps that
don’t require a backend server at all, we recommend serving the project files using a local
webserver during development to avoid issues with security restrictions (sandbox) in browsers. The
sandbox implementation varies between browsers, but quite often prevents things like cookies, xhr,
etc to function properly when an html page is opened via file:// scheme instead of http://.

### Running the App during Development

The angular-seed project comes preconfigured with a local development webserver.  It is a node.js
tool called [http-server][http-server].  You can start this webserver with npm start but you may choose to
install the tool globally:

`
sudo npm install -g http-server
`

Then you can start your own development web server to serve static files from a folder by
running:

`
http-server -a localhost -p 8000
`

Alternatively, you can choose to configure your own webserver, such as apache or nginx. Just
configure your server to serve the files under the app/ directory.

### Running the App in Production

This really depends on how complex your app is and the overall infrastructure of your system, but
the general rule is that all you need in production are all the files under the app/ directory.
Everything else should be omitted.

Angular apps are really just a bunch of static html, css and js files that just need to be hosted
somewhere they can be accessed by browsers.

If your Angular app is talking to the backend server via xhr or other means, you need to figure
out what is the best way to host the static files to comply with the same origin policy if
applicable. Usually this is done by hosting the files by the backend server or through
reverse-proxying the backend server(s) and webserver(s).

## Continuous Integration

### Travis CI

[Travis CI][travis] is a continuous integration service, which can monitor GitHub for new commits
to your repository and execute scripts such as building the app or running tests. The angular-seed
project contains a Travis configuration file, .travis.yml, which will cause Travis to run your
tests when you push to GitHub.

You will need to enable the integration between Travis and GitHub. See the Travis website for more
instruction on how to do this.

### CloudBees

CloudBees have provided a CI/deployment setup:

<a href=”https://grandcentral.cloudbees.com/?CB_clickstart=https://raw.github.com/CloudBees-community/angular-js-clickstart/master/clickstart.json”>
<img src=”https://d3ko533tu1ozfq.cloudfront.net/clickstart/deployInstantly.png”/></a>

If you run this, you will get a cloned version of this repo to start working on in a private git repo,
along with a CI service (in Jenkins) hosted that will run unit and end to end tests in both Firefox and Chrome.

## Contact

For more information on AngularJS please check out http://angularjs.org/

[bower]: http://bower.io
[git]: http://git-scm.com/
[http-server]: https://github.com/nodeapps/http-server
[jasmine]: https://jasmine.github.io
[jdk]: https://en.wikipedia.org/wiki/Java_Development_Kit
[jdk-download]: http://www.oracle.com/technetwork/java/javase/downloads/index.html
[karma]: https://karma-runner.github.io
[node]: https://nodejs.org
[npm]: https://www.npmjs.org/
[protractor]: https://github.com/angular/protractor
[selenium]: http://docs.seleniumhq.org/
[travis]: https://travis-ci.org/



            

          

      

      

    

  

    
      
          
            
  # Leaflet.MousePosition

Leaflet.MousePosition is a simple mouse position control that you can drop into your leaflet map. It displays geographic coordinates of the mouse pointer, as it is moved about the map.

## Using the Mouse Position Control

Insert the following line:


…
L.control.mousePosition().addTo(map);
…




## Available Options:

These are the available options:

position: The standard Leaflet.Control position parameter. Defaults to ‘bottomleft’

separator: To separate longitudelatitude values. Defaults to ‘ : ‘

emptystring: Initial text to display. Defaults to ‘Unavailable’

numDigits: Number of digits. Defaults to 5

lngFirst: Weather to put the longitude first or not. Defaults to false

lngFormatter: Custom function to format the longitude value. Defaults to undefined

latFormatter: Custom function to format the latitude value. Defaults to undefined

prefix: A string to be prepended to the coordinates. Defaults to the empty string ‘’.



            

          

      

      

    

  

    
      
          
            
  # WASDI Python Library

WASDI is the Web Advanced Space Developer Interface. This software is a preliminary version of the Python Library you can use to access the [WASDI](http://www.wasdi.net) platform functionalities from your Python code.

Visit us at [http://www.wasdi.net](http://www.wasdi.net)

The source code can be found [here](https://github.com/fadeoutsoftware/WASDI/tree/develop/libraries/waspy)



## Python tutorial

WASPY is the **WAS**DI **Py**thon Library.

### Prerequisites:

mandatory:


	a [WASDI](http://www.wasdi.net) registered user (with a username/password, google users are not supported yet)


	at least one workspace


	some EO products in your workspace




Optional:


	[SNAP Python (snappy) interface](https://senbox.atlassian.net/wiki/spaces/SNAP/pages/50855941/Configure+Python+to+use+the+SNAP-Python+snappy+interface): this is not necessary but you may find these useful, especially for reading and writing images locally ([howto](https://senbox.atlassian.net/wiki/spaces/SNAP/pages/19300362/How+to+use+the+SNAP+API+from+Python)). Anyway, most of the SNAP functionalities are wrapped by WASDI, so don’t worry.




### Installation

To start working with WASPY, just install the library using:

`bash
pip install wasdi
`

To quickly check if the installation worked correctly, try running the following code:

`python
import wasdi
print(wasdi.hello())
`

You should see this kind of output:

`json
{"boolValue":null,"doubleValue":null,"intValue":null,"stringValue":"Hello Wasdi!!"}
`

### Configuration

Create a config.json file. It is a standard json file, which is used to store the credentials of the user and some other settings. The syntax is:

`json
“VARIABLE_NAME”: value
`

Hint: exploit an editor which can check the syntax (there are many which can be accessed online for free)

The minimal configuration to begin working with WASPY is:

```json
{


“USER”: “yourUser@wasdi.net”,
“PASSWORD”: “yourPasswordHere”,
“WORKSPACE”: “nameOfTheWorkspaceYouWantToUse”





}

For the other available parameters please refer to the Documentation.

### Start WASPY

To start WASPY and check if everything is working, run the following code:

`python
wasdi.init('./config.json')
`

(Adapt the path if the file is not located in your working directory)

The Lib will read the configuration file, load the user and password, log the user in, and then open the workspace specified in the configuration file. To check if everything is working, try to get the list of workspaces available for the user:

`python
wasdi.getWorkspaces()
`

You should be able to see a result similar to the following one:

```python
[{u’ownerUserId’: u’yourUser@wasdi.net’,



u’sharedUsers’: [],
u’workspaceId’: u’23ab54f3-b453-2b3e-284a-b6a4243f0f2c’,
u’workspaceName’: u’nameOfTheWorkspaceYouWantToUse’},





	{u’ownerUserId’: u’yourUser@wasdi.net’,
	u’sharedUsers’: [],
u’workspaceId’: u’103fbf01-2e68-22d3-bd45-2cf95665dac2’,
u’workspaceName’: u’theNameOfAnotherWorkspace’}]








```

The configured Workspace is already opened.  The use can open another workspace using:

`python
wasdi.openWorkspace('theNameOfAnotherWorkspace')
`

and the lib replies showing the workspace unique id:

`python
u'9ce787d4-1d59-4146-8df7-3fc9516d4eb3'
`

To get the list of the products available in the workspace, call

`python
wasdi.getProductsByWorkspace('nameOfTheWorkspaceYouWantToUse')
`

and the lib returns a list of the products in the given workspace:

`python
[u'S1A_IW_GRDH_1SDV_20190517T053543_20190517T053608_027263_0312F1_F071.zip',
u'S1B_IW_RAW__0SDV_20190506T052631_20190506T052703_016119_01E53A_D2AD.zip', u'S1A_IW_GRDH_1SDV_20190517T053608_20190517T053633_027263_0312F1_3382.zip']
`


	Now try something more, let’s search for some Sentinel 1 images. Let’s assume we are interested in images taken from “2018-09-01” to “2018-09-02”. Also, we’d better specify a bounding box. Assume we’re interested in images with latitude in [43, 44] and longitude in [11, 12]. We can think of these coordinates as a rectangle limited by the upper left corner (44, 11) and the lower right corner`(43, 12)`.
	The corresponding code is:





`python
wasdi.wasdiLog('Let\'s search some images')
aoImages = wasdi.searchEOImages("S1", "2018-09-01", "2018-09-02", 44, 11, 43, 12, None, None, None, None)
wasdi.wasdiLog('Found ' + str(len(aoImages)))
`

The output should be similar to this:


	```
	Let’s search some images





[INFO] waspy.searchEOImages: search results:
[{


‘footprint’: ‘POLYGON ((8.8724 45.3272, 8.4505 43.3746, 11.4656 43.0981, 11.9901 45.0472, 8.8724 45.3272, 8.8724 45.3272))’,
‘id’: ‘cba6c104-3006-4af7-a2d1-cbd55f58b939’,
‘link’: ‘https://catalogue.onda-dias.eu/dias-catalogue/Products(cba6c104-3006-4af7-a2d1-cbd55f58b939)/$value’,
‘preview’: None,
‘properties’: {


‘offline’: ‘false’,
‘downloadable’: ‘’,
‘filename’: ‘S1A_IW_RAW__0SDV_20180902T052727_20180902T052759_023515_028F75_7325.zip’,
‘size’: ‘1.54 GB’,
‘pseudopath’: ‘RADAR/LEVEL-0/2018/09/02, S1/1A/SAR-C/LEVEL-0/IW_RAW__0S/2018/09/02, S1/1A/LEVEL-0/IW_RAW__0S/2018/09/02, S1/SAR-C/LEVEL-0/IW_RAW__0S/2018/09/02, S1/LEVEL-0/IW_RAW__0S/2018/09/02, 2014-016A/SAR-C/LEVEL-0/IW_RAW__0S/2018/09/02, 2014-016A/LEVEL-0/IW_RAW__0S/2018/09/02’,
‘link’: ‘https://catalogue.onda-dias.eu/dias-catalogue/Products(cba6c104-3006-4af7-a2d1-cbd55f58b939)/$value’,
‘format’: ‘application/zip’,
‘creationDate’: ‘2018-09-03T05:12:37.000Z’




},
‘provider’: ‘ONDA’,
‘summary’: ‘Date: 2018-09-03T05:12:37.000Z, Instrument: null, Mode: null, Satellite: null, Size: 1.54 GB’,
‘title’: ‘S1A_IW_RAW__0SDV_20180902T052727_20180902T052759_023515_028F75_7325’




},
{‘(…7 more results similar to this one, omitted for brevity)’}]
Found 8
```

Now we can import one of those products in WASDI: let’s download the first one:

`python
sImportWithDict = wasdi.importProduct(None, None, aoImages[0])
`

We can see a list of the products in the workspace as follows:

`python
asProducts = wasdi.getProductsByActiveWorkspace()
wasdi.wasdiLog(asProducts)
`

The second line logs the list of products

### Running an existing workflow

If you wish to run an existing SNAP workflow you can use wasdi.executeWorkflow. For example, if you wish to execute a workflow that calibrates and corrects the georeference of a Sentinel 1 image, you may use the workflow called LISTSinglePreproc in this way:

`python
asProducts = wasdi.getProductsByActiveWorkspace()
sStatus = wasdi.executeWorkflow([asProducts[0]], ['lovelyOutput'], 'LISTSinglePreproc')
`

Here the first line gets the list of products and the second calls the workflow LISTSinglePreproc on the first product of the workspace and creates another product called lovelyOutput.

### A more complete example

Now put everything back together. Create a file called [myProcessor.py](https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/myProcessor.py) (follow the link to download the file) with the following content:

```python
import wasdi


	def run(parameters, processId):
	wasdi.wasdiLog(‘Here's the list of your workspaces:’)
aoWorkspaces = wasdi.getWorkspaces()
wasdi.wasdiLog(aoWorkspaces)
wasdi.wasdiLog(‘The ID of currently selected workspace is:’)
sActiveWorkspace = wasdi.getActiveWorkspaceId()
wasdi.wasdiLog(sActiveWorkspace)

wasdi.wasdiLog(‘Let's search some images…’)
aoImages = wasdi.searchEOImages(“S1”, “2018-09-01”, “2018-09-02”, 44, 11, 43, 12, sProductType=’GRD’)
wasdi.wasdiLog(‘Found ‘ + str(len(aoImages)) + ‘ images’)

wasdi.wasdiLog(‘Download the first one passing the dictionary…’)
sImportWithDict = wasdi.importProduct(None, None, aoImages[0])
wasdi.wasdiLog(‘Import with dict returned: ‘ + sImportWithDict)

wasdi.wasdiLog(‘Now, these are the products in your workspace: ‘)
asProducts = wasdi.getProductsByActiveWorkspace()
wasdi.wasdiLog(asProducts)

wasdi.wasdiLog(‘Let's run a workflow on the first image to rectify its georeference…’)
sStatus = wasdi.executeWorkflow([asProducts[0]], [‘lovelyOutput’], ‘LISTSinglePreproc’)
if sStatus == ‘DONE’:


wasdi.wasdiLog(‘The product is now in your workspace, look at it on the website’)




wasdi.wasdiLog(‘It's over!’)



	def WasdiHelp():
	sHelp = “Wasdi Tutorial”
return sHelp





```

Then create another file to start the processor. Let’s call it [tutorial.py](https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorial.py) (follow the link to download the file), with the following content:

```python
import myProcessor
import wasdi

bInitResult = wasdi.init(‘config.json’)
if bInitResult:


myProcessor.run(wasdi.getParametersDict(), ‘’)




```

Now, if you run tutorial.py, it will call myProcessor.py, which will go through the instructions we saw above. Pro tip: keep the browser open in wasdi.net (make sure you are logged in) and open the workspace you are using, to see the evolution of the script in real time.

### Deploy your processor on WASDI

Finally, to deply our processor on WASDI, you need first to create a text file called [pip.txt](https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/pip.txt) (follow the link to download the file) containg the packages we imported in myProcessor.py, one per line. Since we just imported wasdi, it should look like this:

`
wasdi
`

Now, create a zip file containing these two files:


	myProcessor.py


	pip.txt




You can now upload the zip file on wasdi.net from Edit -> Processor -> New WASDI App by giving it a name and completing the other details. You will need to do this just once.
To run it, go to WADI Apps -> (select yours) -> no parameters are needed, so just enter {} and clic run.



### More to include WASDI in a custom Processor

Let’s assume that the developer has his own EO Product Manipulation Code. At some point, the developer wishes to read his own input file, then make elaborations and finally save an output file.

Let’s imagine a pseudo-code like this.

```python
# Input and output file name
filename = ‘~wasdiUser/EO/myfile.zip’
outputfilename = “~wasdiUser/EO/myoutput.tiff”

# Read the file
EOimage = multibandRead(filename, size, precision, offset, interleave, byteorder)

# Elaborate the image somehow
EOimage *= 2

# Save the output
imwrite(EOimage, outputfilename)
```

To port the code onto WASDI, the pseudo-code has to be integrated like this:

```python
import wasdi
import os

filename = ‘myfile.zip’
outputFileName = ‘myoutput.tiff’

fullInputPath = wasdi.getFullProductPath(filename)

# Read the file
EOproduct = multibandRead(fullInputPath, size, precision, offset, interleave, byteorder)

# Elaborate the image
EOproduct *= 2

# Save the output
# Get The Path
outputPath = wasdi.getSavePath()
fullOutputPath = os.path.join(outputPath, outputFileName)

# Use the save path
imwrite(EOproduct, fullOutputPath)

# Ingest in WASDI
wasdi.addFileToWASDI(outputFileName)
```

We modified the code to start the library and then to receive from WASDI the paths to use.

The input files are supposed to be in the workspace. In order for this to happen, the user can go the wasdi web application, open the workspace, search the needed image and add it to the workspace.

The wasdi.getFullProductPath method has a double goal:


	as the name suggests, it returns the local path to use back to the developer




2. if the code is running on the client PC, the Wasdi Lib will checks if the file is available locally: in case this checks fails, the lib will automatically download the file from the WASDI cloud to the local PC. To disable the auto download feature, is possible to add this parameter to the config.json file:`json
"DOWNLOADACTIVE":0
`

The choice of a name for the output file is left to the user,  WASPY just provides the folder to use (wasdi.GetSavePath). So to save the file we need to get the path and then concatenate the custom file name (fullOutputPath = os.path.join(outputPath, outputFileName)).

The last call, AddFileToWASDI, has the goal to add the product to the workspace. It takes in input only the file name, without the full path.

When used on the local PC, it will automatically upload the file after writing it on local file system. To inhibit this behavior, just add the following to the config.json:`json
"UPLOADACTIVE":0
`

### Use Custom parameters

Every processor usually has its own parameters. A typical example can be the name of a file in input, a threshold, the coordinates of an area of interest and so on. To let the developer work with her/his own parameters, WASPY implements an automatic file read.

Add this line to the configuration file config.json:

`json
"PARAMETERSFILEPATH": "<path to a similar file for own parameters>"
`

e.g.

`json
"PARAMETERSFILEPATH": "c:/temp/myparameters.txt"
`

Then create the same file in the right folder and fill it with all the needed parameters, using the same syntax used for config.json; e.g.:

`json
"INPUTFILE": "S1A_imported_file.zip",
"THRESHOLD": 5,
"POINT": [44.2, 23.4]
`

The decision about how to encode these parameters is left to the developer. For WASDI these are all strings. In the example above, the developers may know that THRESHOLD is a number, and POINT is couple of coordinates that must to be splitted.

The only limit is that each parameter has to be written in one line.

In WASPY there are these three methods available:


	wasdi.getParameter(sKey): return the value of the sKey Parameter


	wasdi.addParameter(sKey, sValue): updates the value of a Parameter (ONLY in memory NOT in the file)


	wasdi.refreshParameters(): reads the parameter file from disk again




Let’s update the code above to use the parameters file. First of all create a parameter file and set the name and path in the config.json file. The file (i.e., parameters.json) might look like this:

```json
{


“INPUT_FILE”: “S1A_imported_file.zip”,
“OUTPUT_FILE”: “FloodedArea.tif”







}

Then modify the code to read the parameters without using hard-coded input:

```python
import wasdi
import os

# The input file is supposed to be in the workspace
# Read the file from parameters
filename = wasdi.getParameter(“INPUT_FILE”)
outputfilename = wasdi.getParameter(“OUTPUT_FILE”)

fullInputPath = wasdi.getFullProductPath(filename)

# Read the file
EOproduct = multibandRead(fullInputPath, size, precision, offset, interleave, byteorder)

# Elaborate the image
EOproduct  *= 2

# Save the output
# Get The Path
outputPath = wasdi.getSavePath()
fullOutputPath = os.path.join(outputPath, outputFileName)

# Use the save path
imwrite(EOproduct, fullOutputPath)

# Ingest in WASDI
wasdi.addFileToWASDI(outputFileName)
```





            

          

      

      

    

  

    
      
          
            
  ###Put here your Help File



            

          

      

      

    

  

    
      
          
            
  # __/== Changelog ==\__

## [0.5.1] - 2020-05-27

## Fixed


	add File to WASDI did a double file Ingest


	Auto upload was active also on server


	Moved upload and download as private methods




## [0.5.0] - 2020-05-15

## Added


	support to the optmized Distributed Architecture




## [0.4.2] - 2020-04-30

## Added


	added deleteWorkspace method




## [0.4.1] - 2020-04-22

## Added


	added log in searchEOImages




## [0.4.0] - 2020-04-22

## Added


	check for availability of params file


	executeProcessor supporting POST other than GET




## Fixed


	bug in getProcessorPayload due to string concatenation with non string




## [0.3.5] - 2020-04-21

### Added


	get payload given process id




### Changed


	added retry and logs to the executeProcess


	added check to the getProcess Status to return ERROR if processId is null or empty


	use of optimized API to get process status




## [0.3.3] - 2020-04-10

### Added


	Added big tiff support to multiSubset (added flag, False by default)


	Added wasdi.copyFileToSftp to copy a file from a workpsace to the user wasdi sftp folder




## [0.3.2] - 2020-04-02

### Added


	Updated waitProcesses to use Massive API


	Updated importAndPreprocess to start all downloads in asynch way from the beginning


	Fixed log in update Progress Perc




## [0.3.1] - 2020-03-26

### Added


	Private API to set the subprocess id




## [0.3.0] - 2020-03-20

### Added


	Support to distributed WASDI nodes




## [0.2.12] - 2020-03-18

### Added


	(Automatic) upload (& ingestion) of files in wasdi




## [0.2.11] - 2020-03-11

### Added


	users can now log at different levels: DEBUG, INFO, WARNING, ERROR and CRITICAL, using respectively: debugLog, infoLog, warningLog, errorLog and criticalLog




### Fixed


	solved error in getProductBBOX internal url construction (it was introduced in last update)




## [0.2.10] - 2020-03-06

### Added


	DEBUG log at the beginning of each method (except those that would log anyway)




### Changed


	improved ‘pythonicyty’ of IFs


	improved exception handling


	improved clarity of log messages




## [0.2.9] - 2020-02-24

### Changed


	Separate changelog according to [keepachangelog](https://keepachangelog.com/)


	Introduced use of python logging instead of prints and _log
- Log at DEBUG level each time a method is accessed
- Log (at ERROR or WARNING, as appropriate), each time an exception is caught




### Fixed


	minor errors in f-strings construction




## [0.2.8] - 2020-02-05

### Fixed


	Solved a bug in the _waitForResume private method.




## [0.2.7] - 2020-01-25

## Added


	Support to Provider selection for search and import


	Generic getPath method for both writing and reading


	Exception handling in getProductBBOX


	Limit to 10 tiles in multiSubset




## [0.2.3] - 2020-01-23

### Added


	Support to WAITING and READY Process State




## [0.1.34] - 2019-12/20

### Added


	createWorkspace




### Fixed


	asynchExecuteProcess bug




### Changed


	Reviewed comment based documentation of all methods




## [0.1.32] - 2019-12-19

### Fixed


	import bug on a not requested package




## [0.1.31] - 2019-12-18

### Added


	multiSubset support


	console input of user, pw and workspace if config is not specified




## [0.1.30] - 2019-12-10

### Added


	asynch version of the import Products Method


	import Product for a list of files


	get Product Bounding Box


	first version of importAndPreprocess Version




### Fixed


	bug on Verbose Flag




## [0.1.29] - 2019-11-05

### Fixed


	possible infinite loop in addFileToWASDI




## [0.1.28] - 2019-10-28

### Added



	support to .vrt format for mosaic







## [0.1.26] - 2019-10-24

### Added


	try and catch to importProduct




### Changed


	getFullProductPath works also for non existing files




## [0.1.23] - 2019-10-23

### Fixed


	deleteProduct bug (did not get standard headers)




## [0.1.22] - 2019-10-16

### Changed


	updated mosaic to last gdal-supported version




## [0.1.21] - 2019-10-15

### Changed


	moved fileExistInWasdi from protected to public




## [0.1.20] - 2019-10-15

### Added


	possibility to run synch and asynch workflows without the need to use the array of input and ouput files if not needed: user can pass just strings




## [0.1.19] - 15/10/2019

### Removed


	unwanted import from wasdi lib




## [0.1.18] - 2019-10-15

### Changed


	Splitted importEO product in two version: one with product dictionary object and one with url and bbox




### Fixed


	waitProcesses syntax for python 2 compatibility




## [0.1.17]- 2019-10-15

### Added


	waitProcesses to wait for more than one asynch process


	getParamter version with a second optional parameter to use as default




### Fixed


	bug about cloud coverage in search EO Images




## [0.1.16] - 2019-09-16

### Added


	setPayload to set the payload of the actual running processor.




### Fixed


	getFullProductPath bug to support many files on the same folder




## [0.1.15]

### Fixed


	Path generation for execution on shared workspaces






            

          

      

      

    

  

    
      
          
            
  JmeterWASDIAsyncSampler external dependencies
* slf4j 1.7.21
* rabbitmq-client 5.1.2
* json-simple 1.1
* org.apache.jmeter 2.11



            

          

      

      

    

  

    
      
          
            
  jmeter test plan for WASDI
requires apache-jmeter >= 3.0 (tested on 3.3)



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





