
WASDI documentation center

May 13, 2024

GETTING STARTED

1 Getting Started with WASDI 3
1.1 Wasdi Web Platform access and basic usage . 3
1.2 Wasdi Libraries Concepts . 10

2 WASDI User Manual 17
2.1 Signing Up and Signing In . 17
2.2 Workspace Management and Use . 21
2.3 Searching for Products . 43
2.4 Managing Subscriptions and Organizations . 47
2.5 Other . 53

3 WASDI Marketplace 59
3.1 Wasdi App Store . 59
3.2 eDrift Tutorial . 67
3.3 Wheat Locator . 84

4 Add your App to WASDI 87
4.1 Python Tutorial . 87
4.2 Jupyter Notebook Tutorial . 127
4.3 Python Landsat Tutorial . 133
4.4 Search and Import EO Images . 148
4.5 Configuration tutorial . 168
4.6 Working with Workspaces and Products . 172
4.7 Synchronous and Asynchronous WASDI programming . 175
4.8 C# Tutorial . 181
4.9 Site Map . 206
4.10 How to create a User Interface (UI) . 209
4.11 Javascript Web Tutorial . 240
4.12 Javascript Angular Tutorial . 250

5 Reference center 257
5.1 C# WasdiLib . 257
5.2 Java WasdiLib . 290
5.3 Matlab WasdiLib . 313
5.4 Octave WasdiLib . 337
5.5 Python WasdiLib . 341
5.6 Javascript WasdiLib . 364
5.7 Create a config.json file . 368
5.8 Python Application Skeleton . 369
5.9 Read Parameters . 370

i

5.10 Search Sentinel-1 Images . 371
5.11 Search Sentinel-2 Images . 374
5.12 Search Sentinel-3 Images . 376
5.13 Search Sentinel-5p products . 378
5.14 Search Copernicus Marine products . 379
5.15 Search ECOSTRESS products . 382
5.16 Search ERA5 products . 384
5.17 Import Images after a Search . 386
5.18 Import And Pre-Process . 388
5.19 Run Snap Workflow . 389
5.20 Run Another WASDI Application . 391
5.21 Save Payload . 393
5.22 Get list of S2 tiles in an area of interest . 394
5.23 Use Library as client . 395
5.24 Change HTTP request timeouts . 396
5.25 Add a Data Provider to WASDI . 397
5.26 Add Application User Interface controls . 406

6 Terms and Conditions 415
6.1 EULA . 415
6.2 Privacy policy . 422

Python Module Index 429

Index 431

ii

WASDI documentation center

WASDI implements a unique, simple and intuitive interface to foster the exploitation of the asset concerning EO data
and satellite products, for satisfying requirements of users’ communities and, in particular:

• experts/researchers in the field of Earth Sciences

• managers of services and public administrations (i.e. civil protection decision makers)

• private companies (i.e. insurance, agricolture)

WASDI allows researchers to gather satellite data, in particular the Sentinel ones, display them on-line, run algorithms,
displaying and evaluating the results, and allows to share these projects among different users.

The results of the calculations will then be available for download, allowing local further processing, or published
directly through the Web.

GETTING STARTED 1

WASDI documentation center

2 GETTING STARTED

CHAPTER

ONE

GETTING STARTED WITH WASDI

WASDI web platform is the best starting point for your journey on Earth Observations (EO) resources !

This basic tutorial will help to acquire the main concepts and use WASDI for your EO research.

If you’re acquired the basic concepts of WASDI and you’re interested in how processors can be launched, take a look
at this tutorial. This will highlights Synchronous and Asynchronous WASDI programming.

https://youtu.be/6LHIwdyh45U

1.1 Wasdi Web Platform access and basic usage

The Home page of WASDI is reachable at the address:

https://www.wasdi.net/

3

https://youtu.be/6LHIwdyh45U
https://www.wasdi.net/

WASDI documentation center

1.1.1 WASDI Login

To create a WASDI account, just click on the New User? Register here! link

To register the user has to input:

• A valid eMail Address (that will be used as UserId)

• A password

• A Name and Surname

The user will receive a confirmation e-mail and then, after the confirmation, will be enabled to use WASDI.

1.1.2 Workspace Management

Each user in WASDI can work in one or more Workspaces. A Workspace is a set of files (original EO data or elaborated
by some processor) that are grouped in the same “project”.

The workspace concept is the same of several other development tools or languages: the same concept can be either be
named workspace or project and any other name designed to identify to a specific set of files.

Once logged for the first time, the user is asked to create a new workspace.

To work with the Editor a Workspace is needed: just click on the text suggestion or on the New Workspace Button on
the top right of the screen.

4 Chapter 1. Getting Started with WASDI

WASDI documentation center

1.1.3 Wasdi Sections

The WASDI Sections are listed in the top blue bar:

• App Store: Space Marketplace: explore and run available applications;

• Workspaces: workspace management: create, open or delete your workspaces;

• Plan: explore new acquisition plan for different Satellite platforms;

• Search: search for Satellite Images from all the supported Data Providers;

• Edit: edit data in a workspace;

• User: link to the documentation;

• User: user info and properties

App Store, Plan, and User are out of the scope of this Tutorial.

Search

The search section has many features; in this guide we will make a basic introduction just to let the user start working
with EO Images.

The user can set the filters:

1.1. Wasdi Web Platform access and basic usage 5

WASDI documentation center

To enable one mission specific filter, first select the tab and the Checkbox of the mission. If no checkbox is selected,
the system will search all the available missions, otherwise, selected it will search only for the selected ones.

WASDI has a Multi Provider search system: this means that the same query is sent to many data providers. The user
can switch providers on/off:

The SERCO ONDA DIAS is the priority one Provider because data is stored in the Cloud where WASDI is installed
so this is, usually, the fastest provider available.

6 Chapter 1. Getting Started with WASDI

WASDI documentation center

To start a query click on the SEARCH button on the top right of the screen:

The results are shown in different tabs for different providers:

To add a image to WASDI, click on the “+” icon near to the name of the image. The system will ask for the workspace
to use and then will start the import of the image.

1.1. Wasdi Web Platform access and basic usage 7

WASDI documentation center

Editor

Editor is where the user can interact with the EO Images.

On the left the tree of the products in the workspace is shown. Each product has its own metadata and band subfolder.

The user can browse the bands of the image. Just click on a band to see the band image.

8 Chapter 1. Getting Started with WASDI

WASDI documentation center

WASDI will publish on the fly in OGC-WMS standard the selected bands.

Once published the band will be shown on the map:

From the editor is possible to run SNAP Workflows and all the available user-supplied processors.

1.1. Wasdi Web Platform access and basic usage 9

WASDI documentation center

1.2 Wasdi Libraries Concepts

This tutorial has to goal to introduce the main WASDI App development concepts, that can be used in all the supported
programming language to get the best from the WASDI libs.

1.2.1 Introduction

To create a WASDI account, just click on the New User? Register here! link

The main goal of the WASDI libraries is to let you develop in your onw enviroment. Do you prefer Windows, Apple
or Linux? Do you use Python, IDL, Java,C#, Javascprit or Matlab? Do you use an integrated IDE, or you code using
VIM? For WASDI is the same.

The world is full of different possibilities and environments and we do not want to introduce a new one. We think that
every one should concentrate to obtain the result not to learn a new tool. So WASDI libraries are designed to be intalled
and used in every environment.

In python you can use:

pip install wasdi

In IDL or Matlab/Octave, just donwload the lib files and save on your computer.

For Java, just download and link our jar to your project.

For C#, install our nuget package.

For JavaScript, install our Node package, or link our cdn lib JavaScript Library.

All the WASDI libraries are Open Source.

1.2.2 Main Goals

The main goals on the libraries are:

• Authenticate in WASDI: this is based on a config file that you must create on your computer, and keep for you
on your computer: here you will declare your WASDI credentials that will be used by the lib to interoperate with
the system.

• Abstract the access to the files: this is the real main concept of WASDI, the only thing we require to our devel-
opers: ask the paths to WASDI!

The file access abstraction is very simple to use: make your code in a way that, when must access one file, it can ask
the path to wasdi:

Python Code
fileFullPath = wasdi.getPath("S2B_MSIL1C_20210124T141049_N0209_R110_T20KNV_
→˓20210124T160035.zip")

; IDL Code
fileFullPath = WASDIGETPATH("S2B_MSIL1C_20210124T141049_N0209_R110_T20KNV_
→˓20210124T160035.zip")

//Java: we created an object WasdiLib oWasdiLib = new WasdiLib();
String sFileFullPath = oWasdiLib.getPath("S2B_MSIL1C_20210124T141049_N0209_R110_T20KNV_
→˓20210124T160035.zip");

10 Chapter 1. Getting Started with WASDI

https://pypi.org/project/wasdi/
https://github.com/fadeoutsoftware/WASDI/blob/master/libraries/idlwasdilib/idlwasdilib.pro
https://github.com/fadeoutsoftware/WASDI/blob/master/libraries/matlabwasdilib/matlabwasdilib.zip
https://www.wasdi.net/javawasdilib.zip
https://www.nuget.org/packages/WasdiLib
https://www.npmjs.com/package/wasdi
https://cdn.jsdelivr.net/npm/wasdi@0.0.18/build/wasdi-javascript.js
https://github.com/fadeoutsoftware/WASDI/tree/master/libraries

WASDI documentation center

% We obtained a lib object calling Wasdi = startWasdi(config_path)
fileFullPath = wGetPath("S2B_MSIL1C_20210124T141049_N0209_R110_T20KNV_20210124T160035.zip
→˓")

All the lib functions, take in input just the file names and not the paths, and you should work in the same way.

Thank to this little rule, WASDI will be able to optimize the access to files: when you work locally, WASDI will
keep the file to the cloud until is not really necessary to open it locally: in that moment, if not present yet, WASDI
will download automatically the file for you. The same when you create your result and wants to add it to the cloud:
WASDI will keep the local file until is possibile, and will automatically upload it if and when requested.

Files are exchanged only once, if and when needed: all is completely transparent to you, in all the supported languages.

1.2.3 Main Entities

To work with WASDI there are only few basic entities to consider:

• Product: in general, any file in WASDI. Products are satellite images taken from a data provider, files imported
by you, files generated by an application or a workflow.

• Workspace: the workspace is a container of pruducts. Is where you can download images, run applications, run
workflows. Each workspace has an owner and can be shared with users.

• Workflow: SNAP graphs. SNAP is the ESA Open Source Tool to handle Sentinels and Other missions images.
A SNAP graph can be uploaded in WASDI with a drag and drop and executed on the cloud

• App: a WASDI app is a processor developed by some WASDI user, in some language, that can be used. An app
can be your own code for instance. Each WASDI Application can be private, can be shared with selected users
or can be public. Each Application can be shown in the marketplace or not. Can be free or not. The developer
can decide any detail of his own application.

1.2.4 Applications Model

The typical WASDI Application can be represented by this schema:

1.2. Wasdi Libraries Concepts 11

https://step.esa.int/main/download/snap-download/

WASDI documentation center

EO Application is the real processor deployed with WASDI. When the End-User starts an application, he must set the
input parameters. These parameters can be a date interval, a bounding box, a sensitivity index and any other specific
option.

Usually EO Applications use these parameters to fetch EO Images that has to be elaborated and create the output
added-value data. The End-User, once the processor is finished, can view the generated output usually in a web GIS
Environment.

All the WASDI EO-Applications accept a key-value dictionary as Parameters.

In python and C#, it is a JSON File.

In Java, Matlab/Octave, IDL, it is a standard properties file in the format:

KEY=VALUE.

Parameters are your own inputs. Since WASDI is desinged to make your application running in the cloud, we ask you
to make “pure code” that does not care how to get inputs from the user, but just USE the inputs given by the user.
This is done in the parameters file: there you decide the inputs you need and there you can put and change your inputs.
WASDI will let you read your inputs using a simple line of code:

#python
myParam = wasdi.getParamter("StartDate", new Date())

;IDL
myParam = WASDIGETPARAMETER("StartDate")

//Java: we created an object WasdiLib oWasdiLib = new WasdiLib();
String sMyParam = oWasdiLib.getParameter("StartDate");

% We obtained a lib object calling Wasdi = startWasdi(config_path)
myParam = wGetParameter("StartDate")

1.2.5 Configuration

All the libraries uses a config file to be initialized. For Java, Matlab/Octave, IDL config files are standard properties
file in the format:

KEY=VALUE

For python and C# it is a JSON file.

The basic configuration, that can be used in almost all cases, is:

USER=your.email@domain.sample
PASSWORD=yourpassword
WORKSPACE=NameOfYourWorkspace
PARAMETERSFILEPATH=./params.txt

{
"USER": "your.email@domain.sample",
"PASSWORD": "yourpassword",
"WORKSPACE": "NameOfYourWorkspace",
"PARAMETERSFILEPATH": "./params.json"

}

12 Chapter 1. Getting Started with WASDI

WASDI documentation center

Basic Parameters are:

• User is your valid WASDI UserId, ie the mail you used to register.

• Password is your valid WASDI password.

• Workspace, is the workspace where you want to run the code you are writing.

• ParametersFilePath File Path is the path where you have the parameters file for the code you are running.

Advanced configuration can be controlled adding these entries to the config file:

• BASEPATH=c:/local/path/ - This is the local base path used by wasdi to read and save the data you are using in
your application.

• DOWNLOADACTIVE=1 - If 1, WASDI will automatically download the data you need in your code when
requested

• UPLOADACTIVE=1 - If 1, WASDI will automatically upload your data to the cloud when requested.

• BASEURL=https://www.wasdi.net/wasdiwebserver/rest - base url of the WASDI APIs

• WORKSPACEID=364c24ff-4891-4d0a-83bd-2772d292f918 - Id of the workspace, can be used as an alternative
to the WORKSPACE name option

• VERBOSE=1 1 to make local console verbose log of the lib, 0 to deactivate

• REQUESTSTIMEOUT=5 - seconds of timeout for the lib http calls

1.2.6 Local File System

As it been stated before, libraries make an automatic optimized download and upload of files from your local PC to
the cloud when and only when is needed. This functionality is smart and is activated only when you work on your
computer; when you will deploy your app to the cloud WASDI will directly access the files.

This means that you will have your files on your computer, and this can be useful to double check your results, open
the files with other tools like ENVI or QGis, copy the files to other locations and whatever you may need.

By default, for all the languages, WASDI use as base folder the home folder of your computer user and adds a .wasdi
folder. Can be:

• Linux: /home/[your user]/.wasdi

• Windows: C:\Users\[your user]\.wasdi

In the .wasdi folder WASDI will create a subfolder for each user and for each workspace. Is very important to remember:
this will be done only if and when is needed!! if there is no need to access the file locally, all we be delegated to the
cloud and no folder will be created. If a file is accessed locally, the folder will be created and the file downlaoded.

Each workspace folder will be named as the workspaceId. The Workspace Id is a guid. You can find the workspace Id
from the web application in two ways:

1.2. Wasdi Libraries Concepts 13

WASDI documentation center

It is in the address bar, when you are in the Editor section. You can click on the info button and read from the property
window the Workspace Id.

The folder structure will be something similar:

• Linux: /home/[your user]/.wasdi/[WASDI_User]/[WorkspaceId]/

• Windows: C:\Users\[your user]\.wasdi\[WASDI_User]\[WorkspaceId]\

These are your folders, you can do what you want of that folders. Again: only and when needed, WASDI will search
there for the needed files and, if not available, will download it.

1.2.7 Basic Functionalities

The basic functionalities are:

• Access users’ workspaces and files

• Search EO Images

• Import EO Images in the workspace

• Execute SNAP Workflows

• Execute other WASDI Applications

14 Chapter 1. Getting Started with WASDI

WASDI documentation center

• Execute basic GIS Operations (mosaic, multisubset)

• Run Sen2Core

1.2.8 Advanced Functionalities

The advanced functionalities are:

• Send log directly to the web user interface

• Update the progress of the processing

• Save a payload associated to each run of the app

• Search and retrieve the execution of other processors and the relative payloads

1.2. Wasdi Libraries Concepts 15

WASDI documentation center

16 Chapter 1. Getting Started with WASDI

CHAPTER

TWO

WASDI USER MANUAL

WASDI has created a comprehensive user manual to explain and simplify all operations in WASDI. If you require
explanation for any concepts in WASDI, please see the corresponding section in the manual. A good starting point to
search for and executing applications is the tutorial on the Space Marketplace

2.1 Signing Up and Signing In

To create an account on https://www.wasdi.net/ , navigate to the homepage and click “Sign Up”.

2.1.1 WASDI Login

To create a WASDI account, either click New User? Register here! link.

17

https://www.wasdi.net/

WASDI documentation center

To register, the user must input:

• A vaild email address (this will be your User Id in WASDI).

• A password

• A first name and last name

18 Chapter 2. WASDI User Manual

WASDI documentation center

2.1.2 Keycloak Login

You are also able to create a new account via WASDI’s authentication parter Keycloak. To create an account with
Keycloak, either click Sign Up in the top right-hand corner or click Login, then Sign in with WASDI Login 2.0, and
finally click New User? Register.

2.1. Signing Up and Signing In 19

WASDI documentation center

After you’ve successfully created an account via either method, you will receive a confirmation email. Once you have
followed any prompts in this email, you will be able to use WASDI!

20 Chapter 2. WASDI User Manual

WASDI documentation center

2.2 Workspace Management and Use

2.2.1 The Workspaces Tab

Each WASDI User can work in one or more Workspace. A Workspace ia set of files (original EO data or elaborated by
some processor) that are grouped in the same “project”.

The Workspaces page is where all of your workspaces are displayed. On this page you are able to manage (e.g., create
and delete) and view the properties of each workspace.

When you select a workspace, that workspace’s properties will be displayed and the globe will navigate to the associated
geographic location.

2.2. Workspace Management and Use 21

WASDI documentation center

Inside the “Properties” box, you’ll be able to view the products inside the workspace along with that workspace’s
products.

If you click “New Workspace”, you will be automatically re-directed to a new open workspace. You will be able to
change the name of this new workspace once inside. When the user logs into for the first time, they will be asked to
create a new workspace.

22 Chapter 2. WASDI User Manual

WASDI documentation center

If you are not the owner of a workspace, but you wish to remove a workspace from your account, click the trashcan
icon beside that workspace. This will remove your sharing permissions, not delete the workspace.

However, if you are the owner, then clicking the trashcan and confirming will permanently delete that workspace.

Just like when executing an application through the marketplace, if you click the “open” button beside a workspace
name, you will be directed to that workspace.

If you decide to navigate away from the newly opened workspace, it will remain open in the Edit tab. As long as you
keep WASDI open, this workspace will remain open until you open a different workspace.

2.2. Workspace Management and Use 23

WASDI documentation center

2.2.2 Interacting With Products

Once you have loaded products into your workspace, the products will be housed in the Products Box. The number
beside the title “Products” represents how many products there are in your workspace.

When you click on the arrow beside a product, you will open the Metadata and Bands nodes. The Bands node also
have arrows and when clicked, the Bands will be shown (if there is any).

24 Chapter 2. WASDI User Manual

WASDI documentation center

2.2.3 Publishing and Interacting with Bands

To publish a band, simply open the Bands node for the desired product and then click on the band you wish to publish.
Depending on the band type, the amount of time it takes to publish the band will vary.

You will receive a notification in the bottom right corner that indicates that your band is being published.

Once the publishing is complete, you will see that the band is on the 2D or 3D Map in the style applied to that product
- note the workspace opens with your map component in 2D by default.

• For more information about Styles, please view the section on styles.

Once a band is published, you can set the opacity of the band by using the slider displayed next to that band’s name in
the “Layers” tab.

To view the legend for a band, click the “Legend” button to reveal the legend.

2.2. Workspace Management and Use 25

WASDI documentation center

If you move away from a displayed band and wish to refocus on it quickly, click the “Navigate To” Button.

To remove the band from your map, click the “Remove layer from map” Button.

2.2.4 Reading Metadata

To read the Metadate of a Product, simply click “Metadata” and WASDI will begin fetching the Metadata.

26 Chapter 2. WASDI User Manual

WASDI documentation center

2.2.5 The Editor Toolbar

In the top corner of the workspace below the WASDI navbar, you will find the workspace Toolbar. Here you can execute
different actions in order to work with your workspace.

2.2.6 Apps

Clicking “Apps” will open a dialog box containing all WASDI applications. Applications will be displayed with dif-
ferent names, additionally, there may be apps here that are not in the marketplace.

On the right-hand side of the dialog box, the processor parameters of the first application are displayed by default.
When you select an application this will be updated automatically.

• At first the default parameters provided by the developer are displayed, but you can update them by changing any
of the values in the JSON file and then executing the processor with those parameters by clicking “RUN”.

2.2. Workspace Management and Use 27

WASDI documentation center

If you are not the owner of an application or an application has not been shared with you, you are still able to use that
application and create processor parameters for it by clicking the book icon.

Processor Parameters are parameters you’ve created and saved to execute in that application.

You edit and share processor parameters as with any other WASDI elements.

Once you click “Apply” either on the processor Parameters card or in the information box, that parameters template
will be automatically applied to the application so when you “Run” that application, the parameters you selected will

28 Chapter 2. WASDI User Manual

WASDI documentation center

execute.

If you are the owner or a processor has been shared with you, your toolbar inside the processor card will be different.

In regards to deleting a processor: A processor can only be deleted by the person that uploaded it. If the processor has
been shared with you, by clicking the delete button, you are simply removing your permissions to access the processor
- not the processor itself

• If you’ve removed your permissions by accident, contact the processor’s developer or another WASDI user with
permission to share the processor to have them grant you access once again.

You are also able to download a processor.

If you are the owner of a particular application or it has been shared with you, you will be able to edit it by clicking the
page with pen button in the processor card.

2.2. Workspace Management and Use 29

WASDI documentation center

The editable elements are:

• The Processor Information: i.e., the Short Description, the Programming Language, the Timeout in minutes, and
the JSON Sample. From here you can also access WASDI’s package manager for applications, which will be
explained in depth in the PACKAGE MANAGER section.

• The Processor Store Information: i.e., how the processor appears in the app store (if at all) the Processor’s
Friendly Name (the name it can be searched by in the app marketplace), the application’s information link if
applicable), the developer’s or association’s email , the price of the application either as a description or on
demand use price, a long description, and the categories.

• The Processor Media: i.e., the logo for the application or association, and any other associated imagery - up to
seven (7) images.

• The Processor’s Sharing Settings: i.e., WASDI users with whom the processor has been shared.

• The Processor UI: i.e., the input fields required to run the processor. If the processor is accessed through the
marketplace, these UI fields will show as form inputs. Users will be able to update them manually through the
JSON file as well.

2.2.7 New App

To upload a new application to WASDI, you can click the “NEW APP” button inside the workspace. This will open
a new dialog box that resembles the edit application button in the “EDIT PROCESSOR” section. The difference here
being that you cannot update the Store Information, Media. or Sharing options.

For more information on these options please see the section on Editable Elements in the APPS section.

30 Chapter 2. WASDI User Manual

WASDI documentation center

2.2.8 Package Manager

Once you’ve opened the Package Manager, you will be able to view all the packages the selected application is dependent
on.

To add a package:

• Add the package by name (e.g., affine) - ensure it is spelled correctly, or the package will not be added.

• This method will add the package in its most current version. (e.g., affine 2.40 will be added)

To add a specific version of the package use the following construction - affine == 2.39

2.2. Workspace Management and Use 31

WASDI documentation center

To remove a Package, simply click the remove package button (the Trashcan icon) and confirm.

• When updating the Package Manager in any way, it may take some time to communicate the changes to the
WASDI servers. This is normal and if you close the package manager and re-open it before the action is complete,
it may not be immediately reflected in your dashboard. To check if the action was completed, click “Refresh List”.

To automatically update a Package, click the Update Package button (the Upwards facing Arrow). This action updates
the selected package to the most recent version.

You can search for packages by name in the ‘Search Packages’ input bar. The search is NOT case-sensitive.

32 Chapter 2. WASDI User Manual

WASDI documentation center

2.2.9 Workflows

2.2.10 Import

If you have an image that you would like to use in an existing workspace, you can use the import dialog. You can drag
and drop the file into the box or click the box to search for a file on your machine.

You may also select a Style to apply to this product from the Style dropdown menu.

You will receive a notification once your product has been uploaded and then it will be added to the list of products in
your workspace.

2.2. Workspace Management and Use 33

WASDI documentation center

2.2.11 Open Jupyter

By clicking “Open Jupyter” WASDI begin preparing a Jupyter notebook workspace automatically. This progress on
this process will show up in the Processes Progress Bar.

When the Jupyter Notebook workspace has been prepared, you will receive a notification.

Note: Learn more in the `tutorial about working with Jupyter notebooks in
WASDI<../ProgrammingTutorials/JupyterNotebookTutorial.rst>`_

34 Chapter 2. WASDI User Manual

WASDI documentation center

2.2.12 Styles

The Styles Button will open a dialog displaying all the styles available to WASDI users. These styles will allow you to
change the appearance of published images.

• This is an information viewing dashboard. You cannot apply styles from this dialog. For information on how to
apply styles to products, see the section on editing existing products.

If you are the owner of an existing style or permissions to the style have been shared with you, you can make changes
to a style by clicking the Edit Style button.

In the Edit Style Dialog you can edit the name, description, and XML file (by adding a new one), and set the Style to
public so all WASDI users can access it.

From this same dialog you can manage the users with whom the style has been shared.

2.2. Workspace Management and Use 35

WASDI documentation center

You can also edit the XML file by accessing the “Edit XML” Tab.

2.2.13 Share

The Share button will open a dialog box displaying all the users (if any) that this workspace has been shared with.

36 Chapter 2. WASDI User Manual

WASDI documentation center

Both the owner of the workspace and all the users they’ve shared it with can manage the shared users.

To search a user to share the workspace with, search for the user’s email address associated with their WASDI account
and click “Share”.

• If the email address was correct then the sharing will be executed automatically.

2.2. Workspace Management and Use 37

WASDI documentation center

To remove a user from the workspace, simply click “Remove” and once you confirm that you wish to remove them,
their permissions will be removed automatically. Note: you can give permissions back to a removed user at any time.

2.2.14 The Processes Bar

The processes bar is the most useful component in WASDI. This is where you can find information about actions
executed in your workspace.

When closed, the processes bar will display the status of websocket (Green for connected, red for disconnected), the
number of processes waiting, the number of processes running, a button to open your Workspaces Processes List dialog,
and an arrow to open the processes bar.

When the processes bar is open, you will be able to view all to view the most recent 5 processes that were executed in
your workspace. You can see how long it took for the processor to work (or if it is ongoing).

In the right-most column, you will see either one or two icons. If you click the “Logs” icon you will open the logs for
that operation.

38 Chapter 2. WASDI User Manual

WASDI documentation center

In the logs dialog, you have the option to download a record of the logs in a .txt file.

If you click the “Payload” icon, you will open a dialog where you can view the payload of that operation and copy it to
your clipboard.

2.2. Workspace Management and Use 39

WASDI documentation center

2.2.15 The Workspace Processes List

To open the workspace processes list, click either the “Load More” button at the bottom of the open processes bar or
the “Open Processes List” button representing by the list icon.

40 Chapter 2. WASDI User Manual

WASDI documentation center

In the processes list dialog you can search for specific processes by name or filter your processes based on their status
(Any, Created, Running, Waiting, Ready, Done, Error, Stopped), type (Any, Run Processor, Run IDL, Run MatLab,
Ingest, Download, Publish Band, Graph, Deploy Processor, Copy to SFTP, FTP Upload, Mosaic, Multi-subset), or the
date. To apply the filters, set the filters you wish to use and then click “Apply Filters”. To remove filters you applied,
simply click “Reset Filters”.

You can also download a copy of all the processes executed in this workspace by clicking “Download”. You will receive
a .csv file.

Similarly to the processes bar, you can open the logs and payload dialog for any process that has them from the processes
list.

2.2. Workspace Management and Use 41

WASDI documentation center

2.2.16 The Map

The Map inside your workspaces features that can be found in the top right-hand corner of the map box.

To switch between the 2D leaflet map and the 3D Cesium globe, click the 3D/2D toggler.

The dimension that is not currently active in the large map box will be shown in the Navigation tab of the Naviga-
tion/Layers box.

The home button is used to navigate back to the “home” bounding box for the workspace.

When the arrow button is clicked, the map in the main view will synchronise to that of the navigation tab (smaller map
under your products).

2.2.17 Workspace Details

In the top left-hand corner beside the Products filter, you will find the button to open your Workspace Details

Once open, you will find information about your workspace and the Node which houses your workspace.

42 Chapter 2. WASDI User Manual

WASDI documentation center

You are able to change the node by selecting one from the dropdown menu

If you are using an ADWAISEO node, you will also be able to view the ADWAISEO SLA to review their terms of
service.

2.3 Searching for Products

The search tab is used to search for images that have been recorded in the past. To execute a search:

• Select a date range for your search. You can either select a specific date range or you may use the CronTab to
search more broadly for a season in a certain year (e.g., Spring 2022).

2.3. Searching for Products 43

WASDI documentation center

• You may enter a specific product name if you would prefer (e.g., IW_RAW__0S).

• To enable one mission specific filter, first select the tab and the Checkbox of the mission. If no checkbox is
selected, the system will search all the available missions, otherwise, selected it will search only for the selected
ones. (For example, with S1 - Sentinel-1, you can further narrow your search with Satellite Platform, Polarisation,
Sensor Mode, Relative Orbit Number, and Swath - these inputs will likely change based on the mission you select).

WASDI has a Multi Provider search system: this means that the same query is sent to many data providers. The user
can switch providers on/off:

44 Chapter 2. WASDI User Manual

WASDI documentation center

The SERCO ONDA DIAS is the priority one Provider because data is stored in the Cloud where WASDI is installed
so this is, usually, the fastest provider available.

To start a query click on the SEARCH button on the top right of the screen:

Finally, you must select a specific bounding box (geographic location) to search for images.

2.3. Searching for Products 45

WASDI documentation center

The results will then be returned:

To add a image to WASDI, click on the “+” icon near to the name of the image. You will be able to select all the
workspaces you’d like to add the iamge to. Then click Add to Workspace and WASDI will get to work.

46 Chapter 2. WASDI User Manual

WASDI documentation center

2.4 Managing Subscriptions and Organizations

WASDI has recently implemented a subscription based usage model. To execute various actions in WASDI, the user
must have an a valid subscription and an active project.

2.4.1 Managing Subscriptions

To review your subscriptions, navigate to the subscription dashboard by selecting your subscription type (in this exam-
ple, we are using a PRO account) and click “Manage Subscriptions”.

This action will open the Subscription Management Dialog where all your subscriptions (including expired subscrip-
tions) are shown.

In this dashboard you are able to:

2.4. Managing Subscriptions and Organizations 47

WASDI documentation center

View the users with whom the subscription is shared: by clicking the “Show Users” button, you will open a secondary
dialog box that displays all the users who have access to this subscription. This sharing dialog behaves the same way
that other sharing dialogs behave in WASDI.

To view the Projects associated with the subscription, click the “Show Projects” button represented by a briefcase. This
opens a secondary dialog where you can manage (create, edit, or delete) projects.

To Edit a subscription’s information, click the “Edit Subscription” button. This opens a secondary dialog where you can
view read-only information (the acquisition date, start date, end date, and days remaining) and edit the subscription’s
name, description, and attach an organisation.

48 Chapter 2. WASDI User Manual

WASDI documentation center

You can also remove subscriptions, but be aware: you CANNOT remove subscriptions that are attached to organizations
or have active projects.

If you are not the owner of a subscription, by removing it, you are not deleting it - you are simply removing your
permission to view it. Furthermore, if you are not the owner, information about the subscription is read-only and you
can only edit or create projects for that subscription.

2.4. Managing Subscriptions and Organizations 49

WASDI documentation center

2.4.2 Purchasing Subscriptions

If you do not have a WASDI subscription and would like to purchase one - click the “PURCHASE SUBSCRIPTION”
button in the navbar and select “Purchase Subscription” to be redirected to our purchasing page.

On the purchasing page you will be able to see the distinction between the various tiers of WASDI Subscriptions:

For this example, we will purchase a 1 Day Standard Subscription for 50 euros. By clicking “Buy Now” we open a
dialog box where we can enter a name for this subscription. If we do not enter a name, a standard one will be provided
for us (in this case the standard name will be “One Day Standard”).

50 Chapter 2. WASDI User Manual

WASDI documentation center

When we click “Checkout” we will be re-directed our WASDI’s payment partner, Stripe. All payments are executed
through Stripe. If you do not complete the payment right away, the Subscription information will be saved to your
account and will be available through the “Manage Subscriptions” dialog and will be shown as “Pending. . . ”

To complete your Stripe Payment enter your information to the Stripe payment channel.

2.4. Managing Subscriptions and Organizations 51

WASDI documentation center

Once you have finalized your payment and it is confirmed by Stripe (this usually takes just a few moments) you will be
re-directed to WASDI and if payment was successful, the “Payment Status” will read as “Paid”.

You are now set to use all features in WASDI!

2.4.3 Active Projects

To switch between projects in WASDI, use the projects tab in the navbar. When selected it will show a dropdown list
of all the user’s projects.

To switch between projects, simply select the project you wish to work with. If your selection is successful, that project’s
name will appear in your navbar and you will receive a notification that you selection was successful.

52 Chapter 2. WASDI User Manual

WASDI documentation center

2.5 Other

2.5.1 Accessing Documentation

To access WASDI documentation directly from www.WASDI.net <http://wasdi.net> , select the documentation button
in the navigation bar. Alternatively, you may also select the user profile dropdown (represented by the Alien head) and
select “Docs” from the dropdown.

Both options will re-direct you to the WASDI documentation.

2.5.2 Sending Feedback

To send feedback or report bugs to the WASDI team, select the speech bubble icon in the navigation bar. This will open
a dialog box where you will provide a title and message for the team.

Both input fields must be filled out in order to send the message. The message will be sent via email and the email
address associated with you WASDI account will be included with the feedback.

2.5. Other 53

WASDI documentation center

If your issue requires immediate assistance, you can click “Houston, we have a problem!” and this will open an invitation
to WASDI’s discord server, where we offer live support.

To learn more about Discord, please look to their documentation <https://discord.com/terms>.

To participate in WASDI’s Discord Server, you must have a valid Discord account.

54 Chapter 2. WASDI User Manual

WASDI documentation center

2.5.3 Account Management

To update your account settings, you can open your account management dashboard by selecting the alien icon and
then your user profile (User: Name).

At this current time, it is more efficient to change your password through WASDI’s authentication page, Keycloak.

2.5. Other 55

WASDI documentation center

You can also manage your organizations from this dashboard. For more information about Subscriptions and Organi-
sations, please see the section on “Managing Subscriptions and Organisations”

56 Chapter 2. WASDI User Manual

WASDI documentation center

2.5. Other 57

WASDI documentation center

58 Chapter 2. WASDI User Manual

CHAPTER

THREE

WASDI MARKETPLACE

All the WASDI Applications are available for end users’ with a simple and intuitive Interface. Choose your App, set
your input data with a few clicks and enjoy the result.

A good starting point to applications is the App store overview

3.1 Wasdi App Store

In this tutorial the WASDI app store will be introduced. The document will cover and highlight the main feature of this
WASDI sections and also, will present how a WASDI application can be launched.

The app store concept is pretty common for mobile devices and our efforts was invested to develop the same user
experience for WASDI. An user can upload, execute and share his own application directly on a web browser, with a
fast and consistent user experience.

Also, a dedicated graphical interface(UI) can be added to the application, allowing to supply other users a well taylored
experience.

3.1.1 Introduction

The main app store view consist of a list of entries reporting various WASDI applications:

59

WASDI documentation center

It is possible to search the applications by using the following search field

Also, an user can enable some filters related to categories, developer, ratings and price

3.1.2 Launch an application

Let’s try an application, in particular, search for Automatic S1-S2 Floods. This application can be used to identify
flooded areas, using Sentinel-1 and Sentinel-2 products.

The application, at the lowest level of parameters specification, requires the date of the flood events and the area where
the study must be done. WASDI, will then connect to dedicated servers (DIAS) to gather images and elaborates them
to obtain the final product map.

Click on the Automatic S1-S2 Floods icon

60 Chapter 3. WASDI Marketplace

WASDI documentation center

and then on Open Application

The application UI it is shown. Several tabs are available to the user, allowing to customize the elaboration:

• Advanced allows to select the number of days before events to be evaluated, plus the selection of the Data
Provider

• SAR give the possibility of a fine tuning of SAR(Syntethic Aperture Radar) parameters

• Optical tab deals with cloud coverage, setting a maximum percentage

• GIS allows to set parameters for the customization of final products

• Help reports a handle guide to this particular application

• History allow user to see previous run of the application

3.1. Wasdi App Store 61

WASDI documentation center

• JSON Show to the user the final JSON, which is a structured text format, that contains all parameters that will
be used for the current app run.

For the sake of clarity only Basic tab will be used in this tutorial. More info on all the other parameters and a brief
explanation of the app capabilities can be found in descriptions and in Help tab. This tutorial will analyze the outcome
of a flood occured on 11 May 2021 in Tajikistan and Afghanistan. In particular our analysis will consider imagery from
the Khatlon Region of Tajikistan (References)

From the first available field please select the date of the event and set it to 11/05/2021 (DD/MM/YYYY format). A
text field value is used as default name fot the output images.

As reported in Help section:

Event Code (BASENAME): Base Name of the output file. DO NOT USE “_” or “ “ or other special chars in the Base
Name

The ouput of the WASDI application will be several geoTiff images with the following naming convention:

• One layer for each day with a valid SAR Map, called [CODE]_[DATE]_flood

• SAR flood composite, sum of all days, called [CODE]_[DATE]_sar_flood_sum_days[TOT]

• Optical flood composite, sum of all tiles, called [CODE]_[DATE]_s2_flood

• Composite of SAR and Optical Flood, called [CODE]_[DATE]_flood_sum_days[TOT]

The single pixels in the result images uses the following value legend:

• 0 - No Data

• 1 - No Flood

• 2 - Permanent Water

• 3 - Flooded Areas

Select the area of the event and then click on “run” to start the processing.

After launching the elaboration the user will be redirected to the edit view of the newly generated workspace.

62 Chapter 3. WASDI Marketplace

http://floodlist.com/asia/tajikistan-afghanistan-flash-floods-may-2021

WASDI documentation center

Here, the user can open the lower information bar, by clicking on the arrow in the lower right angle of the current
perspective.

A panel with all the sub-operations is reported, showing the process status and the percentage of each single operation.
In the following image there is reported the very early phases of the elaboration.

3.1. Wasdi App Store 63

WASDI documentation center

After the initial setup WASDI starts to fetch the required images. Each image is then added to the current workspace.

Selecting a result image from the product list it is possible to view the resulting GeoTiff image, geo-localized on the
current map. In this case the image reports only permanent water belonging to the normal streams of rivers or from
lake and sea.

Following the naming convention introduced beforehand, we can note that the current image is obtained from images
acquired day before the flood event reported on the website.

64 Chapter 3. WASDI Marketplace

WASDI documentation center

The geoTiff reported here above show in light blue the flooded areas and in dark blue the permanent waters(river
streams). Congratulations for concluding your remote sensing analysis with WASDI!

3.1.3 Add a new application

We have seen how a deployed application can be launched and how products can be obtained.

For create a new application open a workspace and click on the icon New App from the bar.

A new dialog will be opened allowing the user to insert basic values like name and description of the new application

3.1. Wasdi App Store 65

WASDI documentation center

The user, that from now on we refer as the developer, can use several programming languages for the applications
reported in the following image.

In order to upload the effective application a .Zip file, containing a set of files that must be prepared beforehand. Please
refer to the particular WASDI libraries in order to acquire all the details about conventions and file format required.
Note that it is possible to make the uploaded application available to all users of WASDI, by enabling the dedicated
checkbox.

A great starting point as developer on WASDI is the python tutorial. Check it out !

A key factor of WASDI application is the possibility for the developer to create an user interface for the application,
directly on the WASDI website. A JSON descriptor of the required fields can be edited to allow users to interact with
canonical web widget.

Clicking on the User Interface(UI) tab it is possible to add such widgets by clicking to the corresponding buttons. The
resulting JSON will be then parsed to check syntax coherence and, if the test is passed, used to generates UIs.

66 Chapter 3. WASDI Marketplace

WASDI documentation center

3.2 eDrift Tutorial

The flood-related algorithms available in WASDI support automated mapping of flood in:

• Open area

• Urban area

with:

• Sentinel-1, Sentinel-2 or a combination of the 2 missions

• VIIRS

3.2.1 Floods in open areas

In WASDI there are several applications available to map floods in open areas using either the Sentinel mission or the
VIIRS sensor.

The scheme of Fig. 1 presents the algorithms for flood mapping in open area, using Sentinel-1 and/or Sentinel-2 and
how they relate to each other. The algorithm to map flood from VIIRS sensor will be presented later and separately
from the Sentinel missions.

3.2. eDrift Tutorial 67

WASDI documentation center

When landing in the WASDI marketplace, the used can select the filter “water” to subset only application related to
water in general.

Excluding the apps designed to map a snapshot of water at a particular moment and permanent water (“(S1) Snapshot
water” and “(S2) Snapshot water”),

there still remain a rather large number of apps to map floods.

This guideline should help the user select the best app for the specific need.

In case of flood map of open areas, the most general app is Automatic S1-S2 Floods.

68 Chapter 3. WASDI Marketplace

WASDI documentation center

Automatic S1-S2 Floods generates a fully automatic flood map, in open areas, from Sentinel-1 and Sentinel-2 images.

3.2. eDrift Tutorial 69

WASDI documentation center

In practice, Automatic S1-S2 Floods calls 2 other apps available in WASDI, namely: #. Automatic AUTOWADE #.
Automatic HASARD

Automatic AUTOWADE performs flood area detection in open areas from Sentinel-2 optical images, while Automatic
HASARD executes flood area detection in open areas from Sentinel-1 SAR images. Both apps have their corresponding
On Demand version. The difference between the automatic version and the On Demand version is:

70 Chapter 3. WASDI Marketplace

WASDI documentation center

• Automatic: this version automatically identifies the pairs of pre-flood and post-flood images.

• On Demand: this version uses Sentinel images selected by the user, according to criteria defined in the help
section and such images have to imported manually in the workspace where the analysis is run.

We analyze here first the algorithms available to map floods in open areas with Sentinel-1 and then those to map floods
in open areas with Sentinel-2.

3.2.2 Algorithms to map floods in open areas from Sentinel-1

Automatic HASARD

Automatic HASARD can be used to map floods, in open area, in a given region and for a certain date.

Automatic HASARD actually calls one more app, namely Flood Archive Generator. The difference between Automatic
HASARD and Flood Archive Generator is that the second one is used to generate daily flood maps in the time range
specified by the user. On the other hand, Automatic HASARD calls the Flood Archive Generator to create daily flood
map in the time range around the date specified by the user. By default it considers 15 days after the date specified
by the user and 15 days before the date specified by the user. The reason behind this is that when using Automatic
HASARD, the date of the flood might not be entirely clear. In fact, the daily maps will help narrow down the day of
the largest extent, supporting also monitoring the evolution of the flood around the date selected by the user. Besides
the daily maps of flood, Automatic HASARD will also produce a final composite map that represents the cumulative
flood of all the daily flood maps.

3.2. eDrift Tutorial 71

WASDI documentation center

72 Chapter 3. WASDI Marketplace

WASDI documentation center

Flood Archive Generator

As anticipated above, the Flood Archive Generator is used to generate daily flood maps in the time range specified by
the user. It detects floods in open areas, using Sentinel-1 images. The time range can be as long as the entire archive
of Sentinel-1 images. .. image:: ../_static/eDriftTutorial/10.png

Flood Frequency Map Generator

The Flood Frequency Map Generator is placed in Fig. 1 next to the Flood Archive Generator because this app, starting
from an archive of flood maps (in .tif format) generated, for example, with the Flood Archive Generator, produces 2
outputs:

• a flood count map: a map where each pixel value represents the count of flood events that impacted that pixel

• a data count map: a map where each pixel value represents the number of times for which data (images) were
present

A frequency map can be then computed dividing the flood count map by the data count map.

3.2. eDrift Tutorial 73

WASDI documentation center

74 Chapter 3. WASDI Marketplace

WASDI documentation center

HASARD On Demand

HASARD On Demand generates a flooded area map, in open area, using 2 Sentinel-1 images, one pre and one post the
flood, with the same geometry.

Use this app when fairly certain of the date of the flood and when the 2 Sentinel-1 images have already been pre-
processed from S1 GRD images and saved as .tif files.

3.2. eDrift Tutorial 75

WASDI documentation center

76 Chapter 3. WASDI Marketplace

WASDI documentation center

Parameters

All these apps, working with Sentinel-1 images, share a few parameters, whose meaning and range of possible values
is here discussed.

HSBA Depth
This is the Hierarchical Split Based Approach (HSBA) Depth parameter as defined in Chini et al. (2017). Its default
value of –1 means that the algorithm starts from the entire S1 scene and then, if it did not find any bimodality in the
histogram of the entire scene itself, it will split the entire S1 scene into 4 tiles and check each of them for bimodality
in the histogram distribution of each of the 4 tiles. In case it finds bimodality in the histogram of one or more of the 4
tiles, it keeps, out of the 4 tiles, those that are bimodal, while it keeps splitting again in 4 tiles the tiles whose histogram
is not bimodal.

In case this value is changed to, for instance, 2, this means that the algorithm will not check if the entire S1 image has
a bimodal histogram. It will also not check if the 4 tiles in which the entire S1 scene can be split are bimodal. It will
go straight to check if the 16 tiles in which the entire S1 image can be split are bimodal. This shortens the processing
time and should be used only when the user is fairly certain that the flood represents only a small portion of the entire
S1 scene.

Ashman Coefficient (no units)
The default value of 2.4 is general, while a higher value (e.g. 2.7) can be selected to better separate the 2 distributions

Minimum value (pixels) for bimodal identification
This parameter represents the minimum number (in pixels) that a sub-tile should have to stop further splitting. A
smaller value, like 1,000 pixels, is suggested for small floods, like those that typically happen in Europe, while a larger
flood, like 10,000 pixels, is more appropriate for vast events that can be observed in Asia or in North America.

**Minimum blob size (pixels) **

This parameter is used in post-processing to remove small clusters of pixels that were identified as flood but that most
likely are going to be noise and/or misclassification. A smaller value, like 10 pixels, is suggested for small floods, like
those that typically happen in Europe, while a larger flood, like 150 pixels, is more appropriate for vast events that can
be observed in Asia or in North America.

REFERENCES
M. Chini, R. Hostache, L. Giustarini and P. Matgen, “A Hierarchical Split-Based Approach for Parametric Thresh-

olding of SAR Images: Flood Inundation as a Test Case,” in IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 12, pp. 6975-6988, Dec. 2017, doi: 10.1109/TGRS.2017.2737664.

Chini, Marco, Ramona Pelich, Luca Pulvirenti, Nazzareno Pierdicca, Renaud Hostache, and Patrick Matgen. 2019.
“Sentinel-1 InSAR Coherence to Detect Floodwater in Urban Areas: Houston and Hurricane Harvey as A Test Case”
Remote Sensing 11, no. 2: 107. https://doi.org/10.3390/rs11020107

3.2.3 Algorithms to map floods in open areas from Sentinel-2

Automatic AUTOWADE

Automatic AUTOWADE can be used to map floods, in open area, in a given region and for a certain date. It will search
for Sentinel-2 images pre and post flood, try to detect the flooded areas for each pair of images and then it will mosaic
the final result. All the single output maps and the final mosaic will be added to the workspace.

3.2. eDrift Tutorial 77

https://doi.org/10.3390/rs11020107

WASDI documentation center

78 Chapter 3. WASDI Marketplace

WASDI documentation center

AUTOWADE On Demand S2

AUTOWADE On Demand S2 generates a flooded area map, in open area, using 2 Sentinel-2 images, one pre and one
post the flood, belonging to the same Sentinel-2 tile.

Use this app when fairly certain of the date of the flood and when the 2 Sentinel-2 images have already been imported
into the workspace. It can also work with only 1 Sentinel-2 image, which needs to be the one post the flood.

REFERENCES Pulvirenti, Luca, Giuseppe Squicciarino, and Elisabetta Fiori. 2020. “A Method to Automatically
Detect Changes in Multitemporal Spectral Indices: Application to Natural Disaster Damage Assessment” Remote

3.2. eDrift Tutorial 79

WASDI documentation center

Sensing 12, no. 17: 2681. https://doi.org/10.3390/rs12172681

3.2.4 Algorithms to map floods in open areas from VIIRS

VIIRS Flood

VIIRS Flood produces VIIRS flood map for a specific event and a given areas: it searches the nearest VIIRS images
with respect to the date of the event date and it makes a mosaic in the area of interest. If more than one image is
available, the closest to the event date is taken in order of priority. The ones of the following days are used to try and
fill the cloud gaps. The user can control the number of such days.

80 Chapter 3. WASDI Marketplace

https://doi.org/10.3390/rs12172681

WASDI documentation center

3.2. eDrift Tutorial 81

WASDI documentation center

3.2.5 Floods in urban areas

3.2.6 Algorithms to map floods in urban areas from Sentinel-1

Urban Flood

Urban Flood can be used to map floods in urban on a specific date. It is based on a multi-pass approach exploiting a
stack of interferometric acquisitions. The coherence map between each consecutive pair of images is extracted using
a square moving window. Given t0, i.e., the date of the image acquired during the flood event, we denote with co the
coherence of the image pair acquired on t0 and t1, and pre the one with images acquired on t1 and t2.

• Step (1) allows the double-bounce map to be extracted, i.e., the building footprints.

• Step (2) combines the double-bounce map and the change of pre–co. The underlying assumption is that urban
areas affected by a flood have co < pre.

82 Chapter 3. WASDI Marketplace

WASDI documentation center

3.2. eDrift Tutorial 83

WASDI documentation center

3.3 Wheat Locator

3.3.1 About?

Developed by the GEOAI research group, the “Wheat Locator” App uses a deep learning transformer-based model to
extract wheat fields from Sentinel-2 images as detailed in this manuscript. This work explores the feasibility of cross-
area and cross-year out-of-distribution generalization of crop segmentation models. We adopted the TSViT model to
address wheat field segmentation in Lebanon using PEFT techniques. We relied on an in-house labeled dataset, called
the Lebanese Wheat dataset, that comprises high-quality annotated polygons for wheat and non-wheat classes for the
study area in the Beqaa area, Lebanon, with a total surface of 170 km2, over five consecutive years from 2016 to 2020.
Using a time series of multispectral Sentinel-2 images, our model achieved an 84% F1-score. Our code is publicly
available at this Repo.

84 Chapter 3. WASDI Marketplace

https://geogroup.ai/
https://www.wasdi.net/#!/wheat_locator/
https://geogroup.ai/publication/2023ecrs_peftwheat/
https://openaccess.thecvf.com/content/CVPR2023/papers/Tarasiou_ViTs_for_SITS_Vision_Transformers_for_Satellite_Image_Time_Series_CVPR_2023_paper.pdf
https://github.com/geoaigroup/GEOAI-ECRS2023

WASDI documentation center

The App will automatically download the required Region of Interest (RoI) images or use available workspace images.
Since we trained the transformer model on a Satellite Images Time Series (SITS) of Lebanon, the model’s out-of-
distribution (OOD) performance will be hindered when testing using new regions. This work is in the beta phase, and
your feedback is highly appreciated via this LINK or through info@geogroup.ai.

3.3.2 Input Parameters:

1. Sowing (Planting) Month: wheat planting month in the selected RoI

2. Harvesting Month: wheat harvesting month in the selected RoI

3. Year: wheat harvest year

4. Bounding Box: to reduce time and computational complexity into an acceptable size, the area of the bonding
box should be less than 30km2 (3000ha)

3.3.3 Credits:

Models training and WASDI deployment by Eng. Mohamad Hasan Zahweh under Dr Ali J. Ghandour supervisor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.3. Wheat Locator 85

https://geogroup.ai/#contact
mailto:info@geogroup.ai
https://geogroup.ai/author/mohammad-hasan-zahweh/

WASDI documentation center

86 Chapter 3. WASDI Marketplace

CHAPTER

FOUR

ADD YOUR APP TO WASDI

Unleash the real power of WASDI, developing and uploading your own downstream application to run it on EO images
on the fly! Wasdi supports several programming languages:

• Python 3.x
• IDL 3.7.2
• Octave 6.x
• C#
• Javascript

If you already know WASDI features and you are a Python developer check out the python tutorial

4.1 Python Tutorial

4.1.1 Setup

Open PyCharm and start a new project.

87

WASDI documentation center

Call it “Advanced Python Tutorial” (or however you wish, just remember to be coherent). You may wish to create a
new virtual environment (here we derive it from Python 3.8). Uncheck the option for creating a “main.py” welcome
script (or, at least, remember to delete it later on).

Let’s install the library we need. In the terminal write:

88 Chapter 4. Add your App to WASDI

WASDI documentation center

pip install wasdi

and press enter

hint: if you previously installed wasdi, you may wish to update it by adding the –upgrade flag, i.e.:

pip install --upgrade wasdi

4.1.2 Create first files

Now we need to create these two fundamental files (right click on the AdvancedPythonTutorial project icon, new ->
. . .):

• myProcessor.py: create a python file, then call it myProcessor.py

• config.json: create a file, then call it config.json (PyCharm will recognize automatically it’s a JSON file)

4.1. Python Tutorial 89

WASDI documentation center

Create python file

Create myProcessor.py

90 Chapter 4. Add your App to WASDI

WASDI documentation center

Create a file

Create config.json

Next, point your browser to wasdi.net, log in, make sure you see the workspaces page (otherwise click on the workspaces
menu) and create a new workspace. Call it somehow, e.g., “AdvancedTutorialTest” (or however you want, just remember
it and be coherent later on). Leave the browser open on that page, we’ll need it later on.

Create a workspace called AdvancedTutorialTest

4.1. Python Tutorial 91

WASDI documentation center

4.1.3 First lines

Let’s begin by editing the config.json file. It’s a JSON file, containing the user credentials and some fundamental
parameters to get you started:

{
"USER": "your user name here",
"PASSWORD": "your password here",
"WORKSPACE": "AdvancedTutorialTest"

}

NOTE: please, keep this file for yourself. You should never give this file to anyone else, and you do not need to upload
to WASDI, as we’ll see later on. You just need this file in your project for working with the WASDI python library.

Now, open myProcessor.py, create a main and a method called run. The latter is required for WASDI to work (more on
that later on).

Note: these are two requirements necessary to use WASDI:

• have a python file called myProcessor.py

• have a function called run() (no params) within myProcessor.py

After that, you can include as many python files as you need, no matter if they are organized in directories. You just
need to have a myProcessor.py with a method run() as entry point.

The main method will initiate the WASDI library and call the run method:

import wasdi

def run():
pass

if __name__ == '__main__':
wasdi.init("./config.json")
run()

As you can see, we call wasdi.init and pass the relative path of the config file to it.

92 Chapter 4. Add your App to WASDI

WASDI documentation center

Let’s debug to see the effects of this. Note: if a file main.py was created automatically for you, remember to define
another debug configuration. The easiest way to do so is by right clicking on your code and select Debug ‘myProces-
sor.py’.

4.1. Python Tutorial 93

WASDI documentation center

If the setup is correct so far, we should see the output from the wasdi library that shows the initialization has gone well.
Let’s see it more in details:

[INFO] _loadParams: wasdi could not load param file. That is fine, you can still load it␣
→˓later, don't worry

We’ll see to this later, for now we trust it and do not worry ;-)

[INFO] waspy.init: returned session is: 0d3f3ef1-f4c3-4202-9015-6ca17fc21cc7

Great, we authenticated and got a session (yours is going to be different)

[INFO] waspy.init: WASPY successfully initiated :-)

Good news

[INFO] waspy.printStatus: user: username@email.address
[INFO] waspy.printStatus: password: ***********
[INFO] waspy.printStatus: session id: 0d3f3ef1-f4c3-4202-9015-6ca17fc21cc7

Looks like our credentials worked. Yours username and session id will be different, and the password will not be shown.
Pay attention, if you forget to insert the password, WASDI will ask you for it.

[INFO] waspy.printStatus: active workspace: 4f541d2c-4b29-445b-9869-9c8d185932ce
[INFO] waspy.printStatus: workspace owner: username@email.address

This code corresponds to the workspace we opened, i.e., AdvancedTutorialTest (it’s going to be different for you), next
is the email address you used to register on WASDI

[INFO] waspy.printStatus: parameters file path: None

We did not provide a parameter file, we’ll see this later

[INFO] waspy.printStatus: base path: C:\Users\username\.wasdi\

This is the base path inside which WASDI will mirror the online file structure, creating one folder per workspace

[INFO] waspy.printStatus: download active: True
[INFO] waspy.printStatus: upload active: True

Downloads and uploads will happen automatically when necessary

[INFO] waspy.printStatus: verbose: True

Verbosity

[INFO] waspy.printStatus: param dict: {}

94 Chapter 4. Add your App to WASDI

WASDI documentation center

No params so far

[INFO] waspy.printStatus: proc id:
[INFO] waspy.printStatus: base url: http://www.wasdi.net/wasdiwebserver/rest
[INFO] waspy.printStatus: is on server: False
[INFO] waspy.printStatus: workspace base url: http://www.wasdi.net/wasdiwebserver/rest

More config info, which are fine

[INFO] waspy.printStatus: session is valid :-)

This is good

Process finished with exit code 0

And the debug finishes

4.1.4 WASDI Hello World

Now let’s try to call a WASDI API. There’s a hello world API just for these tests. Let’s change the run method code as
follows:

def run():
sHello = wasdi.hello()
print(sHello)

Basically, the method wasdi.hello wraps a call to WASDI hello world API and returns the response, which we print on
the next line, getting the following result:

{"boolValue":null,"doubleValue":null,"intValue":null,"stringValue":"Hello Wasdi!!"}

So that’s our first WASDI processor: we demonstrated we can authenticate and call an API using code.

4.1. Python Tutorial 95

WASDI documentation center

4.1.5 Introducing parameters

Now we’ll see how WASDI lets you handle the parameters for your processor. Let’s create a new file called parame-
ters.json (Right click on the project, New -> File, name it parameters.json)

That’s another JSON file where the developer can set and/or simulate inputs for his processor. The idea is that WASDI
processors can manipulate satellite images fed in input to create added-value products to be output. Parameters are
those variables needed by the developer to retrieve input data and/or generate output data.

In the tutorial we are going to see some typical examples: the area of interest, the type of satellite data, a date or interval
of dates. These parameters are defined in the file params.json During the development and the debug of the processor,
the developer must write her/his input in this file. It’s like a dictionary: this way, the programmer decides what are the
parameters and their syntax, and by assigning them a value she/he can test them.

Let’s try this example:

{
"NAME": "advanced python tutorial"

}

We also need to edit the config.json file to specify that we want to use parameters.json as the parameters file, and that’s
done by adding the following line:

"PARAMETERSFILEPATH": "./parameters.json"

(please check that the JSON is valid, check especially your commas).

Now edit the run method and change it as follows:

def run():
sName = wasdi.getParameter('NAME')
wasdi.wasdiLog(f'Welcome to the {sName}')

During the initialization, parameters are read from the specified file.

wasdi.getParameter is the method for reading a single parameter, and a default value can be specified.

96 Chapter 4. Add your App to WASDI

WASDI documentation center

wasdi.wasdiLog is the utility for logging a line. It’s a print, locally, but when executed on the cloud, it prints a long
line on the user interface.

Let’s debug it and we’re going to see, after the initialization output, the following line:

Welcome to the advanced python tutorial

Parameters can be of any type supported by the JSON format. When the processor will be deployed, the final user, or
third party systems will be able to run it passing these parameters.

4.1. Python Tutorial 97

WASDI documentation center

4.1.6 A more meaningful example

Let’s try another example. We want to write a processor that searches for Sentinel-2 images and uses them to create a
RGB GeoTIFF file.

You can download the final code from here:

myProcessor.py

4.1.7 Step 1: read and validate parameters

Let’s change our parameters in parameters.json as follows:

{
"BBOX": "45.9,8.5,45.7,8.7",
"MAXCLOUD": "30",
"DATE": "2020-10-25",
"SEARCHDAYS": "20"
}

Now the file is in its final form, and you can download the file from here: parameters.json

These parameters represent, respectively:

• the area of interest in the format “NORTH,WEST, SOUTH, EAST”

• the maximum cloud coverage (percentage)

• a date in which we want to search images

• a maximum number of days to search back in time.

Now, edit the code of myProcessor.py

First of all, add the following imports:

from datetime import datetime
from datetime import timedelta

Next, modify the run method as follows:

def run():
STEP 1: Read "real" parameters
sBBox = wasdi.getParameter("BBOX")
sDate = wasdi.getParameter("DATE")
sMaxCloud = wasdi.getParameter("MAXCLOUD", "20")
sSearchDays = wasdi.getParameter("SEARCHDAYS", "10")
sProvider = wasdi.getParameter("PROVIDER", "AUTO")
L1
sImageType = wasdi.getParameter("IMAGETYPE", "S2MSI1C")
L2
sImageType = wasdi.getParameter("IMAGETYPE", "S2MSI2A")
Check the Bounding Box: is needed
if sBBox is None:

wasdi.wasdiLog("BBOX Parameter not set. Exit")
wasdi.updateStatus("ERROR", 0)
return

(continues on next page)

98 Chapter 4. Add your App to WASDI

https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorials/advancedPythonTutorial/myProcessor.py
https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorials/advancedPythonTutorial/parameters.json

WASDI documentation center

(continued from previous page)

Split the bbox: it is in the format: NORTH, WEST, SOUTH, EAST
asBBox = sBBox.split(",")
if len(asBBox) != 4:

wasdi.wasdiLog("BBOX Not valid. Please use LATN,LONW,LATS,LONE")
wasdi.wasdiLog("BBOX received:" + sBBox)
wasdi.wasdiLog("exit")
wasdi.updateStatus("ERROR", 0)
return

Ok is good, print it and convert in float
wasdi.wasdiLog("Bounding Box: " + sBBox)
fLatN = float(asBBox[0])
fLonW = float(asBBox[1])
fLatS = float(asBBox[2])
fLonE = float(asBBox[3])
iDaysToSearch = 10
try:

iDaysToSearch = int(sSearchDays)
except Exception as oEx:

wasdi.wasdiLog(f'Number of days to search not valid due to {repr(oEx)}, assuming 10 [
→˓' + str(sSearchDays) + "]")
Check the date: assume now
oEndDay = datetime.today()
try:

Try to convert the one in the params
oEndDay = datetime.strptime(sDate, '%Y-%m-%d')

except Exception as oEx:
No good: force to yesterday
wasdi.wasdiLog(f'Date not valid due to {repr(oEx)}, assuming today')

oTimeDelta = timedelta(days=iDaysToSearch)
oStartDay = oEndDay - oTimeDelta
sEndDate = oEndDay.strftime("%Y-%m-%d")
sStartDate = oStartDay.strftime("%Y-%m-%d")
Print the date
wasdi.wasdiLog("Search from " + sStartDate + " to " + sEndDate)
Check the cloud coverage
sCloudCoverage = None
if sMaxCloud is not None:

sCloudCoverage = "[0 TO " + sMaxCloud + "]"
wasdi.wasdiLog("Cloud Coverage " + sCloudCoverage)

else:
wasdi.wasdiLog("Cloud Coverage not set")

The code reads, validates and manipulates the parameters.

updateStatus is another primitive: it allows to update the process status and the progress (percent) of its execution.

4.1. Python Tutorial 99

WASDI documentation center

Each WASDI process has a status among the following:

• CREATED: a newly created process, waiting to be executed

• RUNNING: a process that is being executed

• WAITING: a process that was running and is now waiting for another resource, and has been put on hold for this
reason

• READY: a process that obtained the resource for which it was WAITING and is now waiting for the WASDI
scheduler to continue executing it

• DONE: process that completed successfully

• ERROR: the execution encountered some error that prevented the process from completing correctly

• STOPPED: process stopped by the user or by another processor.

Let’s run it and, if everything is properly set, we will see the usual output, but now we are going to see these two lines
too (one is different, the other is new):

100 Chapter 4. Add your App to WASDI

WASDI documentation center

[INFO] waspy.printStatus: parameters file path: .\parameters.json

[INFO] waspy.printStatus: param dict: {'BBOX': '45.9,8.5,45.7,8.7', 'MAXCLOUD': '30',
→˓'DATE': '2020-10-25', 'SEARCHDAYS': '10'}

Also, we are going to see our logs:

Bounding Box: 45.9,8.5,45.7,8.7
Search from 2020-10-15 to 2020-10-25
Cloud Coverage [0 TO 30]

4.1.8 Step 2: search the catalogs for EO data

Add the following lines to the run method to search for EO images

STEP 2: Search EO Images
aoImages = wasdi.searchEOImages("S2", sStartDate, sEndDate, fLatN, fLonW, fLatS, fLonE,␣
→˓sImageType, None, None, sCloudCoverage, sProvider)
for oImage in aoImages:

wasdi.wasdiLog("Image Name WITHOUT Extension:" + oImage['title'])
wasdi.wasdiLog("Image Name WITH Extension:" + oImage['fileName'])

The method searcheEOimages allows filtering for area of interest (bounding box), mission, product type, orbit number,
sensor operational mode and cloud coverage (when applicable to the data type). A more advanced usage allows to
specify the provider to use, but that’s beyond the scope of this tutorial.

4.1. Python Tutorial 101

WASDI documentation center

The method returns a list of objects, one per image. Each of these object is in turn a dictionary, describing the image:
it contains every propriety returned by the search, such as, for example:

• footprint

• beginPosition

• endPosition

• cloudShadowPercentage

• relativeOrbitNumber

• orbitDirection

There are many more, and we can see them debugging the code. Please note that the number and type of these param-
eters depends on the data provider.

102 Chapter 4. Add your App to WASDI

WASDI documentation center

4.1.9 Step 3: import EO images in the workspace

Now we want to import selected images in the workspace.

STEP 3: Import EO Images in the workspace
Get the list of products in the workspace
asAlreadyExistingImages = wasdi.getProductsByActiveWorkspace()
List of images not yet available
aoImagesToImport = []
For each found image
for oImage in aoImages:

Get the file Name from the search result
sFileName = oImage["fileName"]
If the file name is not yet in the workspace
if sFileName not in asAlreadyExistingImages:

Add it to the list of images to import
aoImagesToImport.append(oImage)

If there are images to import
if len(aoImagesToImport) > 0:

Trigger the import of the images
wasdi.importProductList(aoImagesToImport, sProvider)
wasdi.wasdiLog("Images Imported")

Here we check, for each image, if it is not yet in the workspace. It’s not strictly necessary, as it is handled by WASDI,
but in this way we optimize the process: if an image is not already present, then we add it to the list of images to be
imported, and finally we retrieve them from the provider.

The method wasdi.getProductsByActiveWorkspace returns a string array with the names of files in the workspace.

4.1. Python Tutorial 103

WASDI documentation center

To compare the search results with the files in the workspace we need to obtain the file name. This can depend on the
provider and on the image type but, for instance, with every Sentinel image it’s easily reproduced with:

sFileName = oImage["title"] + ".zip"

Next, wasdi.importProductList allows to import a batch of images from the specified provider.

WASDI will take control of the process and handle the task by queuing the requests in the background. The entire
operation runs in the cloud. It will take a while, and during that time you will not be able to control the debugger.
However, if you get back to your browser (did you remember to leave it open on the workspace editor?) you will be
able to check the status of the operation.

104 Chapter 4. Add your App to WASDI

WASDI documentation center

If you click on the list icon in the bottom right corner of the screen, you can also view details for each operation in
progress:

4.1. Python Tutorial 105

WASDI documentation center

4.1.10 Step 4: create an 8-bit RGB GeoTIFF out of a Sentinel-2 image

Now we want to open one of those Sentinel-2 images, extract bands for Red, Green and Blue (RGB) and use them
to construct an RGB GeoTIFF. We are going to use numpy and GDAL. GDAL is a set of tool for working with geo
referenced images. You may need to install it in your environment. In that case, execute

pip install GDAL

in your terminal.

Make sure you have the latest version of Microsoft Visual C++ Build Tools installed, you can download the installer
from this link https://visualstudio.microsoft.com/it/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16.

If you get some error, try to install GDAL following these steps:

1. Download the wheel from (https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal) the website has many libraries
that are very useful.

1.1 Pay attention to the last part of the wheel to choose the correct one suitable for your PC, for ex-
ample check if it is 64 or 32 bit.(For more information check: https://realpython.com/python-wheels/
#what-is-a-python-wheel).

2. Open the Windows Terminal (CMD) and type “pip install (the path the wheel located in)”.

Add the following imports:

import numpy
import zipfile
import os
from osgeo import gdal

Now we need a way to extract the three bands from the Sentinel-2 image.

run()

Here in the following you can find the lines to add to the run method. Beware, there are two calls to two methods,
extractBands and stretchBandValues, which will not work: we are going to implement them in a moment, keep reading.
Here’s the snippet:

STEP 4: From the S2 image create a 8-bit RGB GeoTiff
Get again the list of images in the workspace:
asAvailableImages = wasdi.getProductsByActiveWorkspace()
Check if we have at least one image
if len(asAvailableImages) <= 0:

Nothing found
wasdi.wasdiLog("No images available, nothing to do.")
wasdi.updateStatus("DONE", 100)
return

Initialize the image to process as None
sImageToProcess = None

Take the first S2 image
for sImg in asAvailableImages:

if sImg.startswith("S2):
sImageToProcess = sImg
break

(continues on next page)

106 Chapter 4. Add your App to WASDI

https://visualstudio.microsoft.com/it/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal
https://realpython.com/python-wheels/#what-is-a-python-wheel
https://realpython.com/python-wheels/#what-is-a-python-wheel

WASDI documentation center

(continued from previous page)

if sImageToProcess is None:
wasdi.wasdiLog("Cannot find our S2 image in the workspace")
wasdi.updateStatus("DONE", 100)
return

Get the local path of the image: this is one of the key-feature of WASDI
The system checks if the image is available locally and, if it is not, it will␣
→˓download it
sLocalImagePath = wasdi.getPath(sImageToProcess)
sTiffFile = extractBands(sImageToProcess, sImageType)
wasdi.wasdiLog("Generated RGB Tiff: " + sTiffFile)
sOutputFile = sTiffFile.replace(".tif", "_rgb.tif")
stretchBandValues(sTiffFile, sOutputFile)
Delete intermediate Tiff File: NOTE this has not been added to WASDI
so there is the need to clean only the physical file
try:

os.remove(wasdi.getPath(sTiffFile))
except:

wasdi.wasdiLog("Error removing " + sTiffFile)
Add the real output to the WASDI Workspace
NOTE: here starts the opposite path: when running locally, WASDI will upload the file␣
→˓to the cloud
wasdi.addFileToWASDI(sOutputFile)

You noticed the call to wasdi.getPath: those are very important lines, since it’s one of the basis on which we built the
library. Up to now, every file path we used was relative (we actually used just the file name). The key concept here is
that a file is not needed locally until it is open (think of it as a kind of lazy access). WASDI’s getPath method is used
to translate a file name to an absolute path. When the developer tries to access the file, WASDI understands if it exists
in the platform or not and returns, depending on the case, either the local absolute path in which to create a file that
does not yet exist, or the local absolute path from which it is possible to read the searched file. In this second case,
the system automatically understands that the developer is currently working locally and downloads the required file
automatically. As soon as the file is available, the control returns to the IDE, and the debug can proceed.

Note: in general, downloading file is not what we want and, once the processor will be deployed on the cloud, it is
not going to happen any more: we will thus be able to process also large batches of EO data. However, as long as we
are developing, we need to download some images, just to check that everything works as we expect it to work. The
WASDI python library is smart enough to understande whether the code is running on our PC or in the cloud, and
change behavior transparently and automatically.

4.1. Python Tutorial 107

WASDI documentation center

The call to addFileToWasdi is worth a mention too. The method adds the file entry to the WASDI system so that it can
be accessed and further used by WASDI. Again, this call has a double way of working: on the cloud, it simply adds the
product to the WASDI data collection; when executed locally, the library realizes automatically that the file is missing
on the platform and uploads.

Note: we do not like uploads either. However we decided to implement this functionality because being able to test our
processor from end to end to is fundamental. So, uploads will take place only during development, whereas they will
not be necessary when the processor will run on the cloud.

Next, we need to create the following two methods that we wish to call:

• extractBands

• stretchBandValues

108 Chapter 4. Add your App to WASDI

WASDI documentation center

extractBands

This method gets a collection of bands, and extracts them as a virtual GeoTIFF from the Sentinel-2 image, and finally
creates a GeoTIFF with the extracted bands.

def extractBands(sFile, sImageType):
try:

sOutputVrtFile = sFile.replace(".zip", ".vrt")
sOutputTiffFile = sFile.replace(".zip", ".tif")
Get the Path
sLocalFilePath = wasdi.getPath(sFile)
sOutputVrtPath = wasdi.getPath(sOutputVrtFile)
sOutputTiffPath = wasdi.getPath(sOutputTiffFile)
Band Names for S2 L2
asBandsJp2 = ['B04_10m.jp2', 'B03_10m.jp2', 'B02_10m.jp2']
if sImageType != "S2MSI2A":

Band Names for S2 L1
asBandsJp2 = ['B04.jp2', 'B03.jp2', 'B02.jp2']

with zipfile.ZipFile(sLocalFilePath, 'r') as sZipFiles:
asZipNameList = sZipFiles.namelist()
asBandsS2 = [name for name in asZipNameList for band in asBandsJp2 if band in␣

→˓name]
asBandsZip = ['/vsizip/' + sLocalFilePath + '/' + band for band in asBandsS2]
asOrderedZipBands = []
for sBand in ['B04', 'B03', 'B02']:

for sZipBand in asBandsZip:
if sBand in sZipBand:

asOrderedZipBands.append(sZipBand)
break

gdal.BuildVRT(sOutputVrtPath, asOrderedZipBands, separate=True)
, options="-tr " + sResolution + " " + sResolution
gdal.Translate(sOutputTiffPath, sOutputVrtPath)
os.remove(sOutputVrtPath)
return sOutputTiffFile

except Exception as oEx:
wasdi.wasdiLog(f'extractBands EXCEPTION: {repr(oEx)}')

return ""

Sentinel-2 images contain Blue in band 2, Green in band 3, and Red in band 4. Here we extract them from the original
file, save them into a virtual GeoTIFF (a .vrt file), and then we create a GeoTIFF. Finally, we can delete the virtual file,
and return the name of the GeoTIFF RGB file we just created

stretchBandValues

Here, using numpy, we manipulate the bands. Add the following method to myProcessor.py:

def stretchBandValues(sOutputTiffPath, sStretchedOutputFile):
oDataset = gdal.Open(wasdi.getPath(sOutputTiffPath))
if not oDataset:

wasdi.wasdiLog("Impossible to get Dataset from " + sOutputTiffPath)
return ""

[iCols, iRows] = oDataset.GetRasterBand(1).ReadAsArray().shape
oDriver = gdal.GetDriverByName("GTiff")

(continues on next page)

4.1. Python Tutorial 109

WASDI documentation center

(continued from previous page)

oOutDataFile = oDriver.Create(wasdi.getPath(sStretchedOutputFile), iRows, iCols,
oDataset.RasterCount, gdal.GDT_Byte, ['COMPRESS=LZW',

→˓'BIGTIFF=YES'])
sets same geotransform as input
oOutDataFile.SetGeoTransform(oDataset.GetGeoTransform())
sets same projection as input
oOutDataFile.SetProjection(oDataset.GetProjection())
for iBand in range(oDataset.RasterCount):

iBand += 1
oBand = oDataset.GetRasterBand(iBand)
if oBand is None:

wasdi.wasdiLog("BAND " + str(iBand) + " is None, jump")
continue

adBandArray = numpy.array(oBand.ReadAsArray())
adBandArray[adBandArray > 5000] = 5000
adBandArray = adBandArray.astype(float)
adBandArray *= 0.051
adBandArray = adBandArray.astype(int)
oOutDataFile.GetRasterBand(iBand).WriteArray(adBandArray)
oOutDataFile.GetRasterBand(iBand).SetNoDataValue(0)
oBand = None

saves to disk!!
oOutDataFile.FlushCache()
wasdi.wasdiLog("Saved " + sStretchedOutputFile)

This method opens the tif file we just created, reads the bands as numpy arrays, and cuts each band empirically at a
value of 5000, then scales their values down into [0, 255]. The file is saved to disk and its name is returned.

4.1.11 Step 5: close the WASDI processor

We’re almost done! Add the remaining part to myProcessor.py:

STEP 5: close the processor
wasdi.wasdiLog("Created output file " + sOutputFile)
aoPayload = {"OutputFile": sOutputFile}
wasdi.setPayload(aoPayload)
wasdi.updateStatus("DONE", 100)

Here we set a payload for the processor. The payload consists of the output parameters, i.e., a dictionary that can be
retrieved later in form of a JSON object.

110 Chapter 4. Add your App to WASDI

WASDI documentation center

To retrieve that payload you can use wasdi.getProcessorPayloadAsJson and pass the processID as argument. You can
obtain the process ID from the UI or programmatically: it’s given in output when launching another processor. Finally,
we set the status to DONE before closing the processing.

Once the processor is done, we can go to the web UI and open the final result:

To wrap up, you can download the complete code from here: myProcessor.py

4.1. Python Tutorial 111

https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorials/advancedPythonTutorial/myProcessor.py

WASDI documentation center

4.1.12 Creating a help file

You can create a manual for those who are going to use your processor by adding a file called readme.md to your
project. As you can see, it is a markdown file that, once the processor will be deployed, will be rendered to the users.

In the help, it’s a good idea to describe what the processor does and how to use its parameters. This is an example you
can copy and paste in your file:

WASDI Advanced Python Tutorial
This processor searches for Sentinel-2 images and extract an RGB GeoTIFF from it.
Parameters

Parameters are in this form:

{
"BBOX": "45.9,8.5,45.7,8.7",
"MAXCLOUD": "50",
"DATE": "2020-10-25",
"SEARCHDAYS": "20",
"PROVIDER": "AUTO"
}

where:

- BBOX is the bounding box represented as a string with the format: "LATN,LONW,LATS,LONE"
- MAXCLOUD is an integer representing the maximum cloud coverage (percent)
- DATE is a date for the search
- SEARCHDAYS is the maximum number of days to search in the past, so the search will be␣
→˓performed on the BBOX and in the period [DATE - SEARCHDAYS, DATE], and for images with␣
→˓at most MAXCLOUD% cloud coverage
- PROVIDER is the data provider: use "AUTO"

Check your file locally, you’re going to use it in a moment. If you wish, you can download it from here: readme.md

4.1.13 Deploy the processor on WASDI

Now go to the folder containing your processor, create a zip file containing only the following two files:

• myProcessor.py

• readme.md

Pay attention: parameters.json is not necessary, and it is definitely safer not to add config.json

Let us stress the latter once more: do not include config.json in the zip!

112 Chapter 4. Add your App to WASDI

https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorials/advancedPythonTutorial/readme.md
https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorials/advancedPythonTutorial/myProcessor.py
https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorials/advancedPythonTutorial/readme.md

WASDI documentation center

You may call the zip file advancedPythonTutorial.zip if you need a suggestion, but the name really makes no difference.

Note: in a more realistic situation, your processor would probably consist of several files, directory and additional
ancillary data (e.g., a DTM); in such a case, be sure to:

• make the run method in myProcessor.py the entry point

• include every relevant file in the zip archive

4.1. Python Tutorial 113

WASDI documentation center

Now go to the WASDI web UI, make sure you are in editing mode (i.e., you have a workspace open). Clic the Processor
menu, clic New WASDI app.

A dialog opens:

114 Chapter 4. Add your App to WASDI

WASDI documentation center

In the dialog:

• give your processor a name (e.g., advancedpythontutorial). It must be one small case string

• select Python 3.7 as Type

• write a short description, e.g. “This is my very first demo processor”

• leave the TimeOut with its default value (180)

• paste the content of your parameters.json into the JSON sample

• make sure you uncheck the Make Application Public box (yes, it’s definitely a nice processor, but we are going
to have plenty of copies of it. . . ;-))

drag and drop your newly created zip file into the area for download

4.1. Python Tutorial 115

WASDI documentation center

Are you done? Click Apply!

The processor is uploaded to WASDI and automatically deployed. Give it a moment and then click on WASDI Apps.
Start writing the name of the processor to search for it.

Select it, and your JSON demo will be displayed. From here you can run it!

116 Chapter 4. Add your App to WASDI

WASDI documentation center

4.1.14 Turn the processor into an app on the marketplace

Well, well, you did great! Now it’s time to let others use your processor (in a not too distant future, you will even be
able to monetize your processor by selling its usage): enter the WASDI app store!

Go back to the apps, search for advancedpythontutorial, select it, and clic on the pencil icon to edit its properties. ..
image:: ../_static/python_tutorial_images/editYourApp.png

Edit your app You will see that the dialog has some more other than the one we took care of. Now, we are going to see
all of them in details:

• Processor

• Store

• Media

• Share

• UI

4.1.15 Processor tab

We already discussed its usage, but there are still some tweaks we can do here. If you ever needed to edito,one or more
of the files involved, simply make a zip containing just the files you need to modify, drag and drop it as usual, and click
apply. Of course, you can always change any other propriety you wish, from here. Moreover, there are three cases in
which you wish to click the Force refresh button:

• you added new pip packages. If you wish to use other packages, you need to write them down, one per line, in a
text file called pip.txt. Add the file to the zip and deploy it

• you need additional system packages installed. If you need to install additional packages using apt (your code
runs on a Ubuntu distro), add a text file called packages.txt and list the packages you need, one per line. As in
the previous case: add the file to the zip and deploy it

• you updated the wasdi lib

4.1. Python Tutorial 117

WASDI documentation center

4.1.16 Store

Here it’s where you can choose to show your application on the marketplace. You can give it a more friendly name, add
a link and an email address for the users to reach out to support, add prices for the on demand and subscription-based
usage modes, write a longer and nicer description, flag some categories, and, above all, flag the box to show your
application on the app store!

4.1.17 Media

Here you can add a logo and an image for your application

118 Chapter 4. Add your App to WASDI

WASDI documentation center

4.1.18 Share

You can add a user to your application. Think of a colleague: you both will be able to contribute to the same processor.

4.1.19 UI

This is where magic happens again: the WASDI interface generator! Using a JSON you can describe a web user
interface, which will generated automatically for you. You can fiddle around and you will learn how to use, but let’s
make the UI for our processor together.

• Click to put the cursors inside the curly brackets, before “tabs”, then click Render As Strings

• move inside the square brackets after “tabs” and use the Tab button. Name it “Input”. Remove the trailing comma
(or the JSON will not be valid) before the last closing square bracket. Click between the square brackets of your
newly created tab.

• Use the Date button. Call the parameter “DATE” and mark it required. Click after the comma at the end of the
DATE parameter block

• Use the Number slider. Call the parameter “SEARCHDAYS”, mark it required. Give it a description. Give it
boundaries and a default value (e.g., 5-20, default: 10).

• Use the Select Area button. Call the parameter “BBOX”. Mark it required.

• Use the Number slider. Call the parameter “MAXCLOUD”. Mark it required. Bounds are 0 and 100. Default:
30. Give it a description.

• Check there are no trailing commas!

4.1. Python Tutorial 119

WASDI documentation center

This is what it should look like in the end (you can copy paste this, if you did not manage to build your own):

{
"renderAsStrings": true,
"tabs": [{

"name": "Input",
"controls": [{

"param": "PROVIDER",
"type": "dropdown",
"label": "Data Provider:",
"default": "AUTO",
"values": [

"AUTO",
"EODC",
"SOBLOO",
"CREODIAS"

]
}, {

"param": "DATE",
"type": "date",
"label": "Date",
"required": true

}, {
"param": "SEARCHDAYS",
"type": "slider",
"label": "Days to search in the past",
"default": 10,
"min": 5,
"max": 20,
"required": true

}, {
"param": "MAXCLOUD",
"type": "slider",
"label": "Max cloud cover (percent)",
"default": 30,
"min": 0,
"max": 100,
"required": true

}, {
"param": "BBOX",
"type": "bbox",
"label": "Bounding Box",
"required": true

}
]

}
]

}

If you wish, you can download the UI description as a JSON file from here: UI.json

120 Chapter 4. Add your App to WASDI

https://github.com/fadeoutsoftware/WASDI/blob/develop/libraries/waspy/examples/tutorials/advancedPythonTutorial/UI.json

WASDI documentation center

4.1.20 The app store

Now go to the app store, and try to use your app from there. To find it, you can filter using your user, or search using
the name.

Once you opened the app presentation page,

4.1. Python Tutorial 121

WASDI documentation center

The app in the store open the application to test it for real.

122 Chapter 4. Add your App to WASDI

WASDI documentation center

There you can see the interface you just described. Use it, and to see if it works as expected

4.1. Python Tutorial 123

WASDI documentation center

before running the processor, you can also check the JSON that will be generated automatically with the parameters
your processor need:

Feel free to play with your processor and tweak it.

124 Chapter 4. Add your App to WASDI

WASDI documentation center

4.1.21 Delete your app

Are you done? Here you are two sad facts:

• this processor is not a milestone in the history of remote sensing

• Santa Claus does not exist

We cannot change the second, but we can solve the first by deleting the processor: got to the editor (i.e., open a
workspace), search for your app in the WASDI apps menu, clic on the x symbol to delete the app

4.1. Python Tutorial 125

WASDI documentation center

That’s how you delete a processor Clic OK to confirm that you want to delete it

126 Chapter 4. Add your App to WASDI

WASDI documentation center

Confirm processor deletion That’s it, now you know how to manage the entire lifecycle of a WASDI app!

Have fun, and let us know your thoughts

4.2 Jupyter Notebook Tutorial

This tutorial will guide you through the creation and usage of Python Jupyter Notebooks in WASDI.

The (toy) problem we are addressing is retrieving and visualizing data. We will use Sentinel-5p products because they
are small and quick to import, open and visualize, but the procedure works with any type of product supported by
WASDI.

The tutoriaL follows the structure of a webinar we did for ESA:

https://youtu.be/eNkWPD7nehY

4.2.1 Prerequisites

You will need:

• a valid WASDI user

• a workspace

You don’t have them? Then go get them!

4.2. Jupyter Notebook Tutorial 127

http://fadeout.it/#contact
https://wasdi.readthedocs.io/en/latest/UserManual/UsingYourWorkspace.html#open-jupyter
https://youtu.be/eNkWPD7nehY
../GettingStarted/WasdiTutorial.rst

WASDI documentation center

4.2.2 Create and Open Jupyter Lab

Open the workspace and once you are in the editor, click on the “Create Jupyter” button:

An alert will invite you to wait for it to be ready. Do it: click OK, but wait a moment

Jupyter won’t open automatically. If you pay attention, you will notice that the button changed into “Open Jupyter”

128 Chapter 4. Add your App to WASDI

WASDI documentation center

Click on it, and Jupyter Lab will open in another tab of the browser

4.2.3 Get started coding

Let’s create a jupyter: click on the icon to create a new Python 3 (ipykernel) notebook:

We will use matplotlib to generate visualization, so let’s install it. In the first cell type:

!pip install matplotlib

You can execute it.

Next, create a new cell. Let’s import some packages: type the following, and run it

from datetime import datetime
from datetime import timedelta
import numpy
from osgeo import gdal
import matplotlib.pyplot as plt
import wasdi

We can now start the WASDI Python library:

4.2. Jupyter Notebook Tutorial 129

WASDI documentation center

wasdi.init()

Run the cell. Pay attention to the output and enter your username and password when requested. The library will the
proceed to open the current workspace and confirm that the session is valid.

Note: If you don’t get a valid session, you probably inserted the wrong username and password. No problem: re-
execute the cell and try again.

Let’s now see how to log to WASDI, create a new cell, type the following code and run it:

this is how we log a line in WASDI
wasdi.wasdiLog("Welcome to tutorial on Jupyter Notebooks")

Next, we will set up a parameter dictionary. Normally, you wouldn’t do this in a WASDI application, but rather read
the parameters from input. However, to learn how the library works, let’s do this preparatory step. Create a cell and
type the following (read the comments to understand what’s going on):

define input parameters (just for this exercise: normally parameters are fed from the␣
→˓user)

In any geospatial query in WASDI, we will need:
1. an AoI in the form of a bounding box
2. a time interval, in the form of a start and an end date
3. collection-specific parameters

begin with a bounding box
oInputParameters = {

"BBOX": {
"northEast": {

"lat": 51.0,
"lng": 7.7

},
"southWest": {

"lat": 50.0,
"lng": 6.5

}
}

}

Define a time interval
oEndDay = datetime.today()
oStartDay = oEndDay - timedelta(days=2)

stringify the dates
oInputParameters['endDate'] = oEndDay.strftime("%Y-%m-%d")
oInputParameters['startDate'] = oStartDay.strftime("%Y-%m-%d")

print the params so far
print(oInputParameters)

now let's define search parameters specific for this collection:
(continues on next page)

130 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

it's Sentinel-5p, so let's look for a pollutant: NO2
searchParams = {

'producttype': 'L2__NO2___'
}

save parameters in the WASDI session
(normally we would not do this, WASDI would give us the parameters provided by the␣
→˓user)
wasdi.setParametersDict(oInputParameters)

Now let’s see how we can read parameters from within a WASDI application

Note: From within the code of a WASDI application, we don’t know how the parameters were fed to the application.
Several ways are possible: if your code is running locally, then you may have loaded a JSON file, if it’s running in
the cloud, then the parameters might have been passed through the web UI, or maybe they have been passed program-
matically by the calling code. However, we can read the parameter dictionary items with getParameter, or the entire
parameter dictionary using getParametersDict

Create a new cell, input this code, and run it:

Let's see how we read parameters from WASDI

Read Bounding Box(LATN, LONW, LATS, LONE)
the second string is the (optional) default value
sBbox = '51.0,6.5,50.0,7.7'
oBbox = wasdi.getParameter('BBOX', sBbox)

did you notice we specified the default value as a string?
If your python-sense tickled you here, good, you paid attention!
In the previous cell, we specified the BBOX as a dictionary, and here
it's a string, so? No problem! WASDI supports both formats in queries

Let's log it
wasdi.wasdiLog(f'Bounding box: {oBbox}')

Read time interval
sStartDate = wasdi.getParameter('startDate')
sEndDate = wasdi.getParameter('endDate')
print(f'Interval: {sStartDate} - {sEndDate}')

let's log one line
wasdi.wasdiLog(f'Searching Sentinel-5p product for time period: {sStartDate} - {sEndDate}
→˓')

Let’s do the search now. Create a new cell, type the following code, run it:

wasdi.wasdiLog('Search for available Sentinel-5 products')

aoSearchResults = wasdi.searchEOImages('S5P', sStartDate, sEndDate, oBoundingBox=oBbox,␣
→˓aoParams=searchParams)

wasdi.wasdiLog(f'Found {str(len(aoSearchResults))}')

4.2. Jupyter Notebook Tutorial 131

WASDI documentation center

The results are stored in a list, and the last instruction will print just the number of results. Now let’s explore the first
one in a new cell:

let's explore the results of the search
pick the first one:
if len(aoSearchResults) > 0:

print(aoSearchResults[0])

Run the cell: you will see that each result is a dictionary with some items, including the conventional name, the footprint,
and a link for importing it from the data provider. Let’s import it, and don’t worry, WASDI will handle it. Create a new
cell and paste this code in:

import one product

if len(aoSearchResults) > 1:
as an example, import only the first one
wasdi.importProduct(aoSearchResults[0])

print('Product imported')

Run the code to import the product. As an exercise, you can import them all. One way would be to loop through all
the results. A more efficient way, is to use the importProductList method

Now create another cell, and let’s discover how to run a WASDI processors programmatically. Put this code in a new
cell, and run it:

wasdi.wasdiLog('Convert S5 product to GeoTIFF')

pick just the first product returned from the search
oFoundProduct = aoSearchResults[0]

we will call a processor named s5_2_tiff
which is already deployed in WASDI

Prepare the inputs for the processor
aoInputs = {}
aoInputs["S5Image"] = oFoundProduct["fileName"]
aoInputs["Band"] = "nitrogendioxide_tropospheric_column"

call the processor...
wasdi.wasdiLog('starting the processor')
sProcessId = wasdi.executeProcessor("s5_2_tiff", aoInputs)
wasdi.wasdiLog(f'waiting for process {sProcessId} to complete')
and wait for it to complete
sStatus=wasdi.waitProcess(sProcessId)
wasdi.wasdiLog(f'Process {sProcessId} completed in status {sStatus}')

Processors, in WASDI, have a payload, which is way of saving textual data. It’s a JSON object. Let’s see what s5_2_tiff
saved in its payload: create a new cell, past this code in it and run it:

read the payload
oPayload = wasdi.getProcessorPayload(sProcessId, True)

if oPayload is not None:
(continues on next page)

132 Chapter 4. Add your App to WASDI

https://wasdi.readthedocs.io/en/latest/Libraries/python/waspy.html#importproductlist

WASDI documentation center

(continued from previous page)

print(f'Payload saved for the process:\n{oPayload}')
sTiffFile = oPayload["output"]

As an exercise, try to convert all imported files to tiff. Check the payloads of the processors you execute. Finally,
remove imported files (.zip) from workspace and keep just the tiffs you extracted with s5_2_tiff

Finally, let’s have a look at the band. Create a final cell, copy this code there, run it:

let's see the band

if oPayload is not None:
sPath = wasdi.getPath(sTiffFile)

dataset = gdal.Open(sPath)
band1 = dataset.GetRasterBand(1)
b1 = band1.ReadAsArray()
b1[numpy.where(b1 > 1)] = numpy.nan #no data is 9.96921e+36

f = plt.figure()
plt.imshow(b1)
plt.savefig('Tiff.png')
plt.show()

What happened here? wasdi.getPath(sTiffFile) returns the path to the GeoTIFF file we just created. In general, it returns
the path to the product you pass as argument.

Note: If your code is running locally on your PC, the library realises if the product is missing and in that case downloads
it from WASDI to a folder on your hard disk. That means that the first time you will incur a significant delay, but from
the second run on it will be faster.

Then the following code opens the band with GDAL as a dataset, turns it into a numpy array, and then replaces invalid
values with NaN. Finally, the last 3 lines plot the data with matplotlib

4.3 Python Landsat Tutorial

4.3.1 Requirements

This tutorial is designed to show how to work with Landsat 8 files in WASDI. Details of the Landsat 8 mission and/or
guidelines on how to configure your own environment are out of the scope of this tutorial In this tutorial we use PyCharm
as a free Python Development tool, but the code can be executed on every different Python environment.

Note: This tutorial requires gdal working in your python env: we know this can be tricky.

For Windows 10, we suggest following this tutorial:

https://opensourceoptions.com/blog/how-to-install-gdal-for-python-with-pip-on-windows/

The key is that here:

https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal

you can find different pre-build GDAL “images” that can be installed directly asking pip to use the file.

4.3. Python Landsat Tutorial 133

https://opensourceoptions.com/blog/how-to-install-gdal-for-python-with-pip-on-windows/
https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal

WASDI documentation center

4.3.2 Overview

In this tutorial, we will learn how to work with Landsat 8 Images in WASDI. The tutorial will implement a processor
that takes as input:

• Name of a Landsat 8 file

• List of Bands to extract, by default B5 and B4

• Resolution to use

The processor will open the Landsat image, create a tiff with only the selected bands, reprojected to the desired reso-
lution, and then it will calculate NDVI, assuming that the first extracted band is NIR and the second is RED.

The equation to compute NDVI is: [NIR-RED]/[NIR+RED].

Note: It is mandatory that at least 1 Landsat image is imported in the workspace (using the WASDI web interface, i.e.
Search) BEFORE running this processor. Check Wasdi Web Platform access and basic usage for more general info on
this.

4.3.3 Setup

Open PyCharm and start a new project.

Name it “Landsat8Tutorial” (or however you wish, just remember to be coherent). You may wish to create a new virtual
environment or use an existing one. Uncheck the option for creating a “main.py” welcome script (or, at least, remember
to delete it later on).

Let’s install the library we need. In the terminal write:

134 Chapter 4. Add your App to WASDI

https://wasdi.readthedocs.io/en/latest/GettingStarted/WasdiTutorial.html

WASDI documentation center

pip install wasdi

and hit enter

Note: Remember you need also to have gdal installed. If you previously installed wasdi, you may wish to update it by
adding the –upgrade flag, i.e.:

pip install --upgrade wasdi

4.3.4 Create first files

Now we need to create these three fundamental files (right click on the Projec Icon, new -> . . .):

• myProcessor.py: create a python file, then call it myProcessor.py

• config.json: create a file, then call it config.json (PyCharm will recognize automatically it is a JSON file)

• params.json: create a file, then call it params.json (PyCharm will recognize automatically it is a JSON file)

4.3. Python Landsat Tutorial 135

WASDI documentation center

Create python file

Call it myProcessor.py

136 Chapter 4. Add your App to WASDI

WASDI documentation center

Create a json file

Call it config.json

Create a json file

4.3. Python Landsat Tutorial 137

WASDI documentation center

Call it params.json

Next, point your browser to wasdi.net, log in, go in the Workspaces Section and create a new workspace. Call it
“Landsat8Tutorial”.

Go to the search section and select L8 data type and a bounding box in Europe

Select one image and click on the + button to add the image to the Landsat8Tutorial Wokspace

Come back to the edit section, and check that WASDI has been able to fetch the image.

138 Chapter 4. Add your App to WASDI

WASDI documentation center

Take note of the file you imported, we will need it later. For this tutorial we assume:

LC08_L1GT_196029_20211227_20211227_01_RT

but this can be changed with any image you imported.

Leave the browser open on that page, we will need it later on.

4.3.5 First lines

Let’s begin by editing the config.json file. It is a JSON file, containing the user credentials and some fundamental
parameters to get you started (see Wasdi Libraries Concepts):

{
"USER": "your user name here",
"PASSWORD": "your password here",
"PARAMETERSFILEPATH": "./params.json"
"WORKSPACE": "AdvancedTutorialTest"

}

Note: please, keep this file for yourself. You should never give this file to anyone else, and you do not need to upload
to WASDI, as we’ll see later on. You just need this file in your project for working with the WASDI python library.
Use this file to change the workspace where you want to work.

Let’s then edit params.json file. It is a JSON file that represents the inputs needed by our processor. The WASDI
Developer can decide what parameters are needed; each parameter has a unique name within the processor. Each
parameter can be of different types (i.e. Strings, Integers, Float, Arrays, Complex Objects. . .). params.json is where
you declare and valorize your inputs. The same inputs will be avaiable in the WASDI Web Interface when publishing
the processor.

{
"BANDS": ["B5", "B4"],
"RESOLUTION": "30",

(continues on next page)

4.3. Python Landsat Tutorial 139

WASDI documentation center

(continued from previous page)

"L8FILE": "LC08_L1GT_196029_20211227_20211227_01_RT.zip"
}

Now, open myProcessor.py, create a main and a method called run. The latter is required for WASDI to work (more
on that later on).

Note:
These are two requirements necessary to use WASDI:

• have a python file called myProcessor.py

• have a function called run() (no params) within myProcessor.py

After that, you can include as many python files as you need, regardless their organization in directories. You just need
to have a myProcessor.py with a method run() as entry point.

The main method will initiate the WASDI library and call the run method:

import wasdi

def run():
pass

if __name__ == '__main__':
wasdi.init("./config.json")
run()

As you can see, we call wasdi.init and pass the relative path of the config file to it.

140 Chapter 4. Add your App to WASDI

WASDI documentation center

Let’s debug to see the effects of this.

Note: If a file main.py was created automatically for you, remember to define another debug configuration. The easiest
way to do so is by right clicking on your code and select Debug ‘myProcessor.py’.

4.3. Python Landsat Tutorial 141

WASDI documentation center

If the setup is correct so far, we should see the output from the wasdi library that shows the initialization has gone well.
Something like this:

[INFO] _loadParams: wasdi could not load param file. That is fine, you can still load it␣
→˓later, don't worry
[INFO] waspy.init: returned session is: 0d3f3ef1-f4c3-4202-9015-6ca17fc21cc7
[INFO] waspy.init: WASPY successfully initiated :-)
[INFO] waspy.printStatus: user: username@email.address
[INFO] waspy.printStatus: password: ***********
[INFO] waspy.printStatus: session id: 0d3f3ef1-f4c3-4202-9015-6ca17fc21cc7
[INFO] waspy.printStatus: active workspace: 4f541d2c-4b29-445b-9869-9c8d185932ce
[INFO] waspy.printStatus: workspace owner: username@email.address
[INFO] waspy.printStatus: parameters file path: [...]/params.json
[INFO] waspy.printStatus: base path: C:\Users\username\.wasdi\
[INFO] waspy.printStatus: download active: True
[INFO] waspy.printStatus: upload active: True
[INFO] waspy.printStatus: verbose: True
[INFO] waspy.printStatus: param dict: {'BANDS': ['B5', 'B4'], 'RESOLUTION': '30', 'L8FILE
→˓': 'LC08_L1GT_196029_20211227_20211227_01_RT.zip'}
[INFO] waspy.printStatus: proc id:
[INFO] waspy.printStatus: base url: http://www.wasdi.net/wasdiwebserver/rest
[INFO] waspy.printStatus: is on server: False
[INFO] waspy.printStatus: workspace base url: http://www.wasdi.net/wasdiwebserver/rest
[INFO] waspy.printStatus: session is valid :-)

If you have the same situation, we are configured and ready to start!!

142 Chapter 4. Add your App to WASDI

WASDI documentation center

4.3.6 Extract Bands

The first step of our processor will be to extract the bands from the L8 image. WASDI ingest L8 images as a .zip file.
Each .zip file contains different .tif images, one for each band, and some other files. We want to implement a function
that takes as input the name of the L8 zip file, a list of bands, a resolution and that then creates a new .tif file with only
the extracted bands at the desired resolution. The L8 bands are:

• B1 - Coastal aerosol 30m

• B2 - Blue 30m

• B3 - Green 30m

• B4 - Red 30m

• B5 - Near Infrared (NIR) 30m

• B6 - SWIR 1 30m

• B7 - SWIR 2 30m

• B8 - Panchromatic 15m

• B9 - Cirrus 30m

• B10 - Thermal Infrared (TIRS) 1 100m

• B11 - Thermal Infrared (TIRS) 2 100m

Our function is implemented like this:

def extractBands(sFile, asBands, sResolution="30"):
"""
Extracts some bands from the L8 zip file into a multiband tiff file at the specified␣

→˓resolution
Bands are
B1 - Coastal aerosol 30m
B2 - Blue 30m
B3 - Green 30m
B4 - Red 30m
B5 - Near Infrared (NIR) 30m
B6 - SWIR 1 30m
B7 - SWIR 2 30m
B8 - Panchromatic 15m
B9 - Cirrus 30m
B10 - Thermal Infrared (TIRS) 1 100m
B11 - Thermal Infrared (TIRS) 2 100m

:param sFile: name of the Landsat 8 file
:param asBands: array of string with the names of the bands to extract
:param sResolution: resolution as a string is in meteres
:return Returns the name of the new tiff file
"""

Output File Name that will be returned
sOutputTiffFile = ""

try:
Prepare the name a .vrt file that will be used to extract bands from the zip

(continues on next page)

4.3. Python Landsat Tutorial 143

WASDI documentation center

(continued from previous page)

sOutputVrtFile = sFile.replace(".zip", ".vrt")
Prepare the name of the ouptut tif file
sOutputTiffFile = sFile.replace(".zip", ".tif")

Get the Local Path of the input Landsat file
sLocalFilePath = wasdi.getPath(sFile)

Get the path of the output files
sOutputVrtPath = wasdi.getPath(sOutputVrtFile)
sOutputTiffPath = wasdi.getPath(sOutputTiffFile)

Prepare an array of bands called BXX.TIF
asBandsTiff = [b + '.TIF' for b in asBands]

Open the zip file
with zipfile.ZipFile(sLocalFilePath, 'r') as zf:

Get all the files in the zip
asZipNameList = zf.namelist()
Take from the files in the zip, the ones that match the BXX.TIF naming␣

→˓schema we are searching
asBandsL8 = [name for name in asZipNameList for band in asBandsTiff if band␣

→˓in name]

Create the zip path of the files we want to extract
asBandsZip = ['/vsizip/' + sLocalFilePath + '/' + band for band in asBandsL8]

Create an array that has the names of the files to extract in the order␣
→˓required by the asBands array in input

asOrderedZipBands = []

for sBand in asBands:
for sZipBand in asBandsZip:

if sBand in sZipBand:
asOrderedZipBands.append(sZipBand)
break

Let gdal build a virtual file with our bands
gdal.BuildVRT(sOutputVrtPath, asOrderedZipBands, separate=True)

Convert the vrt in tif with option -tr sResolution sResolution to have all␣
→˓bands at the same res (ie -tr 30 30 to have at 30 meters)

gdal.Translate(sOutputTiffPath, sOutputVrtPath, options="-tr " + sResolution␣
→˓+ " " + sResolution)

we can remove the vrt file
os.remove(sOutputVrtPath)

except Exception as oEx:
wasdi.wasdiLog("extractBands EXCEPTION")
wasdi.wasdiLog(repr(oEx))
wasdi.wasdiLog(traceback.format_exc())

except:
wasdi.wasdiLog("extractBands generic EXCEPTION")

(continues on next page)

144 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

Return the output file name
return sOutputTiffFile

4.3.7 Compute NDVI

The second step is to compute the NDVI starting for our extracted Tif file. To compute NDVI we need to access the
NIR and RED bands and compute the formula: NDVI = NIR-RED/NIR+RED

def computeNDVI(sTiffFile, sNDVIOutputFile):
"""
Compute ndvi assuming that in sTiffPath there is as band 1 NIR and band 2 RED
:param sTiffFile: name of the input tiff file
:param sNDVIOutputFile: name of the ouput file with ndvi
:return: full path of sNDVIOutputFile
"""

Open the tiff file: we assume it has two bands
oDataset = gdal.Open(wasdi.getPath(sTiffFile))

if not oDataset:
wasdi.wasdiLog("Impossible to get Dataset from " + sTiffFile)
return ""

Get the dimension of the bands in input
[iCols, iRows] = oDataset.GetRasterBand(1).ReadAsArray().shape
Create gdal GeoTiff driver
oDriver = gdal.GetDriverByName("GTiff")
Create a new Ouput file, same dimension of the input, compressed and with type␣

→˓float32.
oOutDataFile = oDriver.Create(wasdi.getPath(sNDVIOutputFile), iRows, iCols, 1, gdal.

→˓GDT_Float32, ['COMPRESS=LZW', 'BIGTIFF=YES'])

set to the output same geotransform as input
oOutDataFile.SetGeoTransform(oDataset.GetGeoTransform())
set to the output same projection as input
oOutDataFile.SetProjection(oDataset.GetProjection())

We assume NIR = band1, RED = band2
oNIR = oDataset.GetRasterBand(1)
oRED = oDataset.GetRasterBand(2)

Convert the band values in a numpy array
adNIRBandArray = numpy.array(oNIR.ReadAsArray())
adREDBandArray = numpy.array(oRED.ReadAsArray())
Force data to be float
adNIRBandArray = adNIRBandArray.astype(float)
adREDBandArray = adREDBandArray.astype(float)
Compute NDVI formula, where is not nan
adNDVIBandArray = numpy.where((adNIRBandArray + adREDBandArray!=0), (adNIRBandArray-

→˓adREDBandArray)/(adNIRBandArray+adREDBandArray), 0)
(continues on next page)

4.3. Python Landsat Tutorial 145

WASDI documentation center

(continued from previous page)

Write the new calulated NDVI to ouput file band 1
oOutDataFile.GetRasterBand(1).WriteArray(adNDVIBandArray)
We assume 0 as no data
oOutDataFile.GetRasterBand(1).SetNoDataValue(0)

saves to disk!!
oOutDataFile.FlushCache()
wasdi.wasdiLog("Saved " + sNDVIOutputFile)

Clean memory
oNIR = None
oRED = None

Return the name of our NDVI create file
return sNDVIOutputFile

This tutorial shows an NDVI as a sample, but is clear that with this technique you can manipulate L8 data to fit your
needs.

4.3.8 Main Function

Now the main operations are ready, we just need to put it all togheter.

def run():
wasdi.wasdiLog("Landsat tutorial v.1.0")

Read from params the bands we want to extract and the resolution
asBands = wasdi.getParameter("BANDS", ["B5", "B4"])
sResolution = wasdi.getParameter("RESOLUTION", "30")
sL8File = wasdi.getParameter("L8FILE", "LC08_L1GT_196029_20211227_20211227_01_RT.zip

→˓")

Call extract bands
sTiffFile = extractBands(sL8File, asBands, sResolution)

Prepare the output NDVI name
sNDVIFile = sTiffFile.replace(".tif", "_NDVI.tif")

Call compute NDVI
computeNDVI(sTiffFile, sNDVIFile)

Add the file to the WASDI workspace
wasdi.addFileToWASDI(sNDVIFile, "NDVI")

You can now test your processor. Remember that, at the first time you will debug it locally, WASDI will take some
time to download for you the L8 file you are using. All is done automatically and only once, when needed.

In the same way, when you add the file to WASDI, the lib will updload for your result to the cloud:

[INFO] waspy._internalAddFileToWASDI(LC08_L1GT_196029_20211227_20211227_01_RT_NDVI.tif,␣
→˓False)

(continues on next page)

146 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

[INFO] waspy._internalAddFileToWASDI: remote file is missing, uploading
upload LC08_L1GT_196029_20211227_20211227_01_RT_NDVI.tif
uploadFile: uploading file to wasdi...
uploadFile: upload complete :-)
[INFO] waspy._internalAddFileToWASDI: file uploaded, keep on working!
[INFO] Running Locally, will not update status on server

Now that the core of our processor is done, lets make it a little bit more WASDI-integrated. We want to give some
feedback to the user while the app is runnig and we do this using:

• wasdi.wasdiLog: locally just a print to console, when on the server, it sends the logs to the web user interface

• wasdi.updateProgressPerc: when on the server, updates the progress bar of the processor

• wasdi.setPayload: allows to save a user-defined object associated to the processor run

def run():
wasdi.wasdiLog("Landsat tutorial v.1.0")

Read from params the bands we want to extract and the resolution
asBands = wasdi.getParameter("BANDS", ["B5", "B4"])
sResolution = wasdi.getParameter("RESOLUTION", "30")
sL8File = wasdi.getParameter("L8FILE", "LC08_L1GT_196029_20211227_20211227_01_RT.zip

→˓")

wasdi.wasdiLog("Calling extract bands")
Call extract bands
sTiffFile = extractBands(sL8File, asBands, sResolution)

wasdi.updateProgressPerc(30)
wasdi.wasdiLog("Calculating NDVI")

Prepare the output NDVI name
sNDVIFile = sTiffFile.replace(".tif", "_NDVI.tif")

Call compute NDVI
computeNDVI(sTiffFile, sNDVIFile)
wasdi.updateProgressPerc(80)

wasdi.wasdiLog("Adding " + sNDVIFile + " to the workspace")
Add the file to the WASDI workspace
wasdi.addFileToWASDI(sNDVIFile, "NDVI")

Create the payload object
aoPayload = {}
Save the inputs that we received
aoPayload["inputs"] = wasdi.getParametersDict()
Save the output we created
aoPayload["output"] = sNDVIFile
Save the payload
wasdi.setPayload(aoPayload)

Close the process setting the status to DONE
wasdi.updateStatus("DONE", 100)

4.3. Python Landsat Tutorial 147

WASDI documentation center

Welcome to Space, Have fun!

4.4 Search and Import EO Images

This tutorial has to goal to show the functionalities available in WASDI Libraries to search and import EO Images.

4.4.1 Introduction

WASDI is a multi-cloud multi-data-provider platform.

Multi-Cloud means that WASDI run on different cloud environments; your workspace can be hosted on CreoDIAS,
ONDA, AdwaisEO, EDOC or other clouds. Generic users are routed by WASDI in the shared nodes, Premium users
can have dedicated computing nodes and they can also decide to have a specific cloud, depending the real world needs.
This allow us to make always the more optimized choice, and also to be able to have the system up and running also
when a specific cloud has a planned or unplanned mantainance or worst problem.

Multi-Data-Provider means that WASDI is able to fetch (or import, or download, it depends) different kind of Data
from different Providers. At the moment we are writing this tutorial WASDI is able to search and fecth these data:

• Sentinel-1

• Sentinel-2

• Sentinel-3

• Sentinel-5P

• VIIRS Nasa Flood Composite

• PROBA-V

• ENVI

• LANDSAT8

• ERA5 Copernicus Data

• CMES Copernicus Marine Data

• PLANET Commercial Images

WASDI is connected with these data providers:

• LSA Data Center

• ESA Sentinel Hub

• CREODIAS

• ONDA

• SOBLOO

• EODC

• CDS (Copernicus Data Science)

• NOAA

• Terrascope

The Platforms supported and the Data Providers connected are continuously growing.

In this tutorial we will see how to search and import images in WASDI.

148 Chapter 4. Add your App to WASDI

WASDI documentation center

4.4.2 Search EO Images

The function to search EO Images is searchEOImages.

It is a single function with different options.

def searchEOImages(sPlatform, sDateFrom, sDateTo,
fULLat=None, fULLon=None, fLRLat=None, fLRLon=None,
sProductType=None, iOrbitNumber=None,
sSensorOperationalMode=None, sCloudCoverage=None,
sProvider=None, oBoundingBox=None):

"""
Search EO images

:param sPlatform: satellite platform:(S1|S2|S3|S5P|VIIRS|L8|ENVI|ERA5)

:param sDateFrom: inital date YYYY-MM-DD

:param sDateTo: final date YYYY-MM-DD

:param fULLat: Latitude of Upper-Left corner

:param fULLon: Longitude of Upper-Left corner

:param fLRLat: Latitude of Lower-Right corner

:param fLRLon: Longitude of Lower-Right corner

:param sProductType: type of EO product; Can be null. FOR "S1" -> "SLC","GRD",
→˓"OCN". FOR "S2" -> "S2MSI1C","S2MSI2Ap","S2MSI2A". FOR "VIIRS" -> "VIIRS_1d_composite",
→˓"VIIRS_5d_composite". FOR "L8" -> "L1T","L1G","L1GT","L1GS","L1TP". For "ENVI" -> "ASA_
→˓IM__0P", "ASA_WS__0P"

:param iOrbitNumber: orbit number

:param sSensorOperationalMode: sensor operational mode

:param sCloudCoverage: interval of allowed cloud coverage, e.g. "[0 TO 22.5]"

:param sProvider: WASDI Data Provider to query␣
→˓(AUTO|LSA|ONDA|CREODIAS|SOBLOO|VIIRS|SENTINEL). None means default node provider =␣
→˓AUTO.

:param oBoundingBox: alternative to the float lat-lon corners: an object␣
→˓expected to have these attributes: oBoundingBox["northEast"]["lat"], oBoundingBox[
→˓"southWest"]["lng"], oBoundingBox["southWest"]["lat"], oBoundingBox["northEast"]["lng"]

:return: a list of results represented as a Dictionary with many properties. The␣
→˓dictionary has the "fileName" and "relativeOrbit" properties among the others

"""

The only mandatory params are:

• sPlatform: a string with the code of the platform. Each search is done for a single platform.
S1|S2|S3|S5P|VIIRS|L8|ENVI|ERA5 are the currently supported platforms

4.4. Search and Import EO Images 149

WASDI documentation center

• sDateFrom: start date of the search. It is a string in the format YYYY-MM-DD (ie “2021-12-15”)

• sDateTo: end date of the search. It is a string in the format YYYY-MM-DD (ie “2021-12-15”)

The other highly recommended parameter is the bounding box. WASDI accepts only rectangle bounding boxes. This
method supports two ways to specify the rectangle:

• fULLat, fULLon, fLRLat, fLRLon: four float numbers indicating Upper Left Latitude (North), Upper Left Lon-
gitude (West), Lower Right Latitude (South), Lower Right Longitude (East)

• oBoundingBox: an alternative that is an object that has these attributes: oBoundingBox[“northEast”][“lat”],
oBoundingBox[“southWest”][“lng”], oBoundingBox[“southWest”][“lat”], oBoundingBox[“northEast”][“lng”]

sProductType is not mandatory. Can be specified as the “level of processing” of the Platform. Product Types supported
are:

• S1
1. SLC

2. GRD

3. OCN

• S2
1. S2MSI1C

2. S2MSI2Ap

3. S2MSI2A

• S3
1. SR_1_SRA___

2. SR_1_SRA_A

3. SR_1_SRA_BS

4. SR_2_LAN___

• S5P
1. L1B_IR_SIR

2. L1B_IR_UVN

3. L1B_RA_BD1

4. L1B_RA_BD2

5. L1B_RA_BD3

6. L1B_RA_BD4

7. L1B_RA_BD5

8. L1B_RA_BD6

9. L1B_RA_BD7

10. L1B_RA_BD8

11. L2__AER_AI

12. L2__AER_LH

13. L2__CH4___

150 Chapter 4. Add your App to WASDI

WASDI documentation center

14. L2__CLOUD_

15. L2__CO____

16. L2__HCHO__

17. L2__NO2___

18. L2__NP_BD3

19. L2__NP_BD6

20. L2__NP_BD7

21. L2__O3_TCL

22. L2__O3____

23. L2__SO2___

24. AUX_CTMFCT

25. AUX_CTMANA

• VIIRS
1. VIIRS_1d_composite

2. VIIRS_5d_composite

• L8
1. L1T

2. L1G

3. L1GT

4. L1GS

5. L1TP

• ENVI
1. ASA_IM__0P

2. ASA_WS__0P

• PROBAV
1. urn:ogc:def:EOP:VITO:PROBAV_S1-TOC_333M_V001

2. urn:ogc:def:EOP:VITO:PROBAV_S10-TOC_333M_V001

• ERA5
1. reanalysis

2. ensemble_mean

3. ensemble_members

4. ensemble_spread

• PLANET
1. PSScene

2. PSScene3Band

3. PSScene4Band

4.4. Search and Import EO Images 151

urn:ogc:def:EOP:VITO:PROBAV_S1-TOC_333M_V001
urn:ogc:def:EOP:VITO:PROBAV_S10-TOC_333M_V001

WASDI documentation center

4. PSOrthoTile

5. REOrthoTile

6. REScene

7. SkySatScene

8. SkySatCollect

9. SkySatVideo

iOrbitNumber is supported by Sentinel-1 files and is used to filter the relative Orbit.

sSensorOperationalMode is also supported by Sentinel-1 files and can be:

• SM

• EW

• IW

• WV

sCloudCover is supported by Sentinel-2, Landsat8 and PROBA-V. It is the accepted cloud cover percentage. It is a
string in this format: [MIN TO MAX]. For example “[0 TO 30]” means a maximum of 30% of cloud cover. “[0 TO
50]” means a maximum of 50% of cloud cover in the image.

sProvider is the provider to use to search and import images: the user can select one of the providers supported by
wasdi: AUTO|LSA|ONDA|CREODIAS|SOBLOO|VIIRS|SENTINEL. By default, if it is left to null, WASDI will use
the automatic data provider.

4.4.3 Automatic Data Provider

WASDI implements the Automatic Data Provider that is strongly suggested if you do not have a clear need to work
with a specific Data Provider. As we have seen, WASDI supports many Platforms and many Data Provider.

In general, data of one Platform, can be obtained by one or more Data Providers.

The goal of WASDI is always: move the processor near to the data. We say, more realistically, minimize the data
transfer.

Each Cloud has its own data policy: some has a full archive of some Platform, some have more platforms but with a
Long Term Archive policy for file olders than some days, some allows only download, some the file access. . . it is a
complex and varied scenario.

The Automatic Data Provider of WASDI knows the data you are searching and where your code is running: using this
info, WASDI makes a smart choice of the best Data Provider for you. This functionality can be used both for search
and import. Indeed, it is used by default if you do not specify a specific provider.

The Automatic Data Provider has also the advantage to try to get the image from another provider if, for any reason
there is a problem to reach the best one. And this is done with all the providers that supports the platform you are
searching, making WASDI very resilient to the external problems that may happen.

152 Chapter 4. Add your App to WASDI

WASDI documentation center

4.4.4 searchEOImages Output

The output of searchEOImages, is a list of Dictionary Objects with many properties.

The main important keys of the dictionary are “fileName” and “link”. This means you can access the file name with
this code:

aoFound = wasdi.searchEOImages("S1", sDateFrom="2021-02-01", sDateTo="2021-02-02",␣
→˓sProductType="GRD", fULLat=44.5, fULLon=8.5, fLRLat=44.0, fLRLon=9.0)
if len(aoFound) > 0:

wasdi.wasdiLog("Image 0 name: " + aoFound[0]["fileName"]

Usually, you can use directly that object for what you need (ie to import the image/images), but as we have seen you can
directly access the properties you need. In the returnet object, you can find also many other properties: these properties
depends by the Platform and the selected Data Provider, and are easy to explore with a print or in a debug session.

4.4.5 Search Sample Code

In this code we just make different search, of different data types.

Note: This tutorial goes streight to the point: if you need help how to setup a project, add a parameter files and run
your WASDI Application please refer to Python Tutorial.

First of all fill your params.json file:

{
"bbox": {

"northEast": {
"lat": 30.0,
"lng": -96.0

},
"southWest": {
"lat": 29.5,
"lng": -96.5

}
},
"date": "2020-10-09",
"searchdays": 10,
"provider": "AUTO",
"maxCloud": 30,
"s1Type": "GRD"

}

We are defining a bounding box, a reference date, the number of days to search back and the Data Provider. We also
add a Max Cloud for S2 data and the product type for S1.

The full code is here:

import wasdi
import sys
from datetime import datetime
from datetime import timedelta

(continues on next page)

4.4. Search and Import EO Images 153

WASDI documentation center

(continued from previous page)

def run():

try:
Read the bbox
oBbox = wasdi.getParameter("bbox", None)
Read the reference Date
sDate = wasdi.getParameter("date")
Read the provider
sProvider = wasdi.getParameter("provider")
Read the number of days we want to search back from reference date
iDays = wasdi.getParameter("searchdays", 10)
Cloud Cover
iMaxCloud = wasdi.getParameter("maxCloud", 30)
S1 Product Type
sS1ProductType = wasdi.getParameter("s1Type", "GRD")

A boundig box is really needed
if oBbox is None:

wasdi.wasdiLog("Boundig Box is null. The world is still too big.
→˓")

wasdi.updateStatus("ERROR")
sys.exit(1)

Initialize a safe date
oEventDay = datetime.today()

Convert date from YYYY-MM-DD to a valid python date
try:

oEventDay = datetime.strptime(sDate, '%Y-%m-%d')
except:

wasdi.wasdiLog('Date not valid, assuming today')

Now we want to go back of iDays day
oTimeDelta = timedelta(days=iDays)
Ok this is the start date
oStartDay = oEventDay - oTimeDelta
And this is the end date
oEndDay = oEventDay

Get back the date in string format
sStartDate = oStartDay.strftime("%Y-%m-%d")
sEndDate = oEndDay.strftime("%Y-%m-%d")

We start searching Sentinel 1 Data: here we use also product type
aoFound = wasdi.searchEOImages("S1", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sProductType=sS1ProductType, sProvider=sProvider, oBoundingBox=oBbox)

Log how many images we found
wasdi.wasdiLog("S1 found " + str(len(aoFound)))

This will be used to log but not too much
iCount = 0

(continues on next page)

154 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

For each image
for oImage in aoFound:

Log the file name
wasdi.wasdiLog(" " + oImage["fileName"] + " Orbit " + str(oImage[

→˓"relativeOrbit"]))
Increment the counter
iCount = iCount +1
if iCount>5:

Ok, understood the concept, now lets go on
wasdi.wasdiLog("Break")
break

Search S2 Data
sCloudCoverage = "[0 TO " + str(iMaxCloud) + "]"
aoFound = wasdi.searchEOImages("S2", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sCloudCoverage=sCloudCoverage, sProvider=sProvider,␣
→˓oBoundingBox=oBbox)

Log results, as before
wasdi.wasdiLog("S2 found " + str(len(aoFound)))

iCount = 0

for oImage in aoFound:
wasdi.wasdiLog(" " + oImage["fileName"])
iCount = iCount +1
if iCount>5:

wasdi.wasdiLog("Break")
break

Search S3 Data
aoFound = wasdi.searchEOImages("S3", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sProvider=sProvider, oBoundingBox=oBbox)

Log results, as before
wasdi.wasdiLog("S3 found " + str(len(aoFound)))

iCount = 0

for oImage in aoFound:
wasdi.wasdiLog(" " + oImage["fileName"])
iCount = iCount +1
if iCount>5:

wasdi.wasdiLog("Break")
break

Search S5P Data
aoFound = wasdi.searchEOImages("S5P", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sProvider=sProvider, oBoundingBox=oBbox)

Log results, as before

(continues on next page)

4.4. Search and Import EO Images 155

WASDI documentation center

(continued from previous page)

wasdi.wasdiLog("S5P found " + str(len(aoFound)))

iCount = 0

for oImage in aoFound:
wasdi.wasdiLog(" " + oImage["fileName"])
iCount = iCount +1
if iCount>5:

wasdi.wasdiLog("Break")
break

Search L8 Data
aoFound = wasdi.searchEOImages("L8", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sProvider=sProvider, oBoundingBox=oBbox)

wasdi.wasdiLog("L8 found " + str(len(aoFound)))

iCount = 0

For each image
for oImage in aoFound:

wasdi.wasdiLog(" " + oImage["fileName"])
iCount = iCount +1
if iCount>5:

wasdi.wasdiLog("Break")
break

#Search ENVI Data
aoFound = wasdi.searchEOImages("ENVI", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sProvider=sProvider, oBoundingBox=oBbox)

wasdi.wasdiLog("ENVI found " + str(len(aoFound)))

iCount = 0

For each image
for oImage in aoFound:

wasdi.wasdiLog(" " + oImage["fileName"])
iCount = iCount +1
if iCount>5:

wasdi.wasdiLog("Break")
break

Search VIIRS Data
aoFound = wasdi.searchEOImages("VIIRS", sDateFrom=sStartDate,

→˓sDateTo=sEndDate,sProvider=sProvider, oBoundingBox=oBbox)

wasdi.wasdiLog("VIIRS found " + str(len(aoFound)))

iCount = 0

For each image

(continues on next page)

156 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

for oImage in aoFound:
wasdi.wasdiLog(" " + oImage["fileName"])
iCount = iCount +1
if iCount>5:

wasdi.wasdiLog("Break")
break

except Exception as oE:
wasdi.wasdiLog("Error " + str(oE))
wasdi.updateStatus('ERROR')
sys.exit(1)

wasdi.wasdiLog('Done bye bye')
wasdi.updateStatus('DONE', 100)

if __name__ == '__main__':
wasdi.init('./config.json')
run()

The output of this code depends by the params you are using: for example, to find ENVI images, you have to go in the
past. L8 images at the moment are found only in Europe. The cloud coverage can influence the S2 results. We suggest
to play a little bit with the params to see different results.

4.4.6 Import functionalities

Once you found your images, usually you need to import one or more of the results in your workspace to continue your
work. To do this, the lib gives you different options

• importProductByFileUrl: import a single product using directly file name and url. Almost a legacy method, but
left for advanced use.

• importProduct: import a single product. Takes in input one of the objects returned by searchEOImages.

• importProductList: import a list of products. Takes in input an array of objects as returned by searchEOImages.

These are the synch version. Synch means that the function will not exit until the import is done. All methods returns
the status of the operation, a string that can be:

• DONE: operation done with success

• ERROR: operation not done with an error

• STOPPED: operation stopped, by the user or by a timeout

A more advanced use of WASDI can bring you to use the asynch version of these methods. Asynch means that the
method will return not the status but the processId of the import operation. This id can be used to query or wait the
status of the import with waitProcess, waitProcesses, or getProcessStatus.

• asynchImportProductByFileUrl: import a single product using directly file name and url. Almost a legacy
method, but left for advanced use.

• asynchImportProduct: import a single product. Takes in input one of the objects returned by searchEOImages.

• asynchImportProductList: import a list of products. Takes in input an array of objects as returned by
searchEOImages.

4.4. Search and Import EO Images 157

WASDI documentation center

The last option, is an optimized way to import a list of products and apply to them a specific SNAP Workflow. It can be
a S1 search that, after the import, run a workflow to calibrate and geo-reference the image or a S2 that after the import
run a workflow to run an Index like NDVI o many others.

• importAndPreprocess: Imports in WASDI and apply a SNAP Workflow to an array of EO Images as returned
by searchEOImages. Takes in input the array of images, the name of the workflow to run, and the suffix to add
to input files to create workflow output files.

4.4.7 Import Sample Code

The following python app make a search of S1 images and import the results in synch mode. It uses the same params
used for the search sample.

import wasdi
import sys
from datetime import datetime
from datetime import timedelta

def run():

try:
Read the bbox
oBbox = wasdi.getParameter("bbox", None)
Read the reference Date
sDate = wasdi.getParameter("date")
Read the provider
sProvider = wasdi.getParameter("provider")
Read the number of days we want to search back from reference date
iDays = wasdi.getParameter("searchdays", 10)
Cloud Cover
iMaxCloud = wasdi.getParameter("maxCloud", 30)
S1 Product Type
sS1ProductType = wasdi.getParameter("s1Type", "GRD")

A boundig box is really needed
if oBbox is None:

wasdi.wasdiLog("Boundig Box is null. The world is still too big.
→˓")

wasdi.updateStatus("ERROR")
sys.exit(1)

Initialize a safe date
oEventDay = datetime.today()

Convert date from YYYY-MM-DD to a valid python date
try:

oEventDay = datetime.strptime(sDate, '%Y-%m-%d')
except:

wasdi.wasdiLog('Date not valid, assuming today')

Now we want to go back of iDays day
oTimeDelta = timedelta(days=iDays)
Ok this is the start date

(continues on next page)

158 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

oStartDay = oEventDay - oTimeDelta
And this is the end date
oEndDay = oEventDay

Get back the date in string format
sStartDate = oStartDay.strftime("%Y-%m-%d")
sEndDate = oEndDay.strftime("%Y-%m-%d")

We start searching Sentinel 1 Data: here we use also product type
aoFound = wasdi.searchEOImages("S1", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sProductType=sS1ProductType, sProvider=sProvider, oBoundingBox=oBbox)

Log how many images we found
wasdi.wasdiLog("S1 found " + str(len(aoFound)))

Take the current product list
asCurrentFiles = wasdi.getProductsByActiveWorkspace()

if asCurrentFiles is not None:
wasdi.wasdiLog("Products in the workspace before the import: "␣

→˓+ str(len(asCurrentFiles)))

Import products, it may take time...
wasdi.importProductList(aoFound)

Refresh the list
asCurrentFiles = wasdi.getProductsByActiveWorkspace()

if asCurrentFiles is not None:
wasdi.wasdiLog("Products in the workspace after the import: " +␣

→˓str(len(asCurrentFiles)))

except Exception as oE:
wasdi.wasdiLog("Error " + str(oE))
wasdi.updateStatus('ERROR')
sys.exit(1)

wasdi.wasdiLog('Done bye bye')
wasdi.updateStatus('DONE', 100)

if __name__ == '__main__':
wasdi.init('./config.json')
run()

The same work can be done in an asynch way:

import wasdi
import sys
from datetime import datetime
from datetime import timedelta

def run():
(continues on next page)

4.4. Search and Import EO Images 159

WASDI documentation center

(continued from previous page)

try:
Read the bbox
oBbox = wasdi.getParameter("bbox", None)
Read the reference Date
sDate = wasdi.getParameter("date")
Read the provider
sProvider = wasdi.getParameter("provider")
Read the number of days we want to search back from reference date
iDays = wasdi.getParameter("searchdays", 10)
Cloud Cover
iMaxCloud = wasdi.getParameter("maxCloud", 30)
S1 Product Type
sS1ProductType = wasdi.getParameter("s1Type", "GRD")

A boundig box is really needed
if oBbox is None:

wasdi.wasdiLog("Boundig Box is null. The world is still too big.
→˓")

wasdi.updateStatus("ERROR")
sys.exit(1)

Initialize a safe date
oEventDay = datetime.today()

Convert date from YYYY-MM-DD to a valid python date
try:

oEventDay = datetime.strptime(sDate, '%Y-%m-%d')
except:

wasdi.wasdiLog('Date not valid, assuming today')

Now we want to go back of iDays day
oTimeDelta = timedelta(days=iDays)
Ok this is the start date
oStartDay = oEventDay - oTimeDelta
And this is the end date
oEndDay = oEventDay

Get back the date in string format
sStartDate = oStartDay.strftime("%Y-%m-%d")
sEndDate = oEndDay.strftime("%Y-%m-%d")

We start searching Sentinel 1 Data: here we use also product type
aoFound = wasdi.searchEOImages("S1", sDateFrom=sStartDate,␣

→˓sDateTo=sEndDate, sProductType=sS1ProductType, sProvider=sProvider, oBoundingBox=oBbox)

Log how many images we found
wasdi.wasdiLog("S1 found " + str(len(aoFound)))

Take the current product list
asCurrentFiles = wasdi.getProductsByActiveWorkspace()

(continues on next page)

160 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

if asCurrentFiles is not None:
wasdi.wasdiLog("Products in the workspace before the import: "␣

→˓+ str(len(asCurrentFiles)))

Import products, in an async mode
asProcIds = wasdi.asynchImportProductList(aoFound)

Do something else in the meanwhile: maybe smarter than this
wasdi.wasdiLog("Here we are, while is working")
iSampleNumber = 1
iSampleNumber = iSampleNumber * 100
wasdi.wasdiLog("We made something useless, in the meantime: " +␣

→˓str(iSampleNumber))

Ok now wait for WASDI to finish
wasdi.waitProcesses(asProcIds)

wasdi.wasdiLog("Imports done")

Refresh the list
asCurrentFiles = wasdi.getProductsByActiveWorkspace()

if asCurrentFiles is not None:
wasdi.wasdiLog("Products in the workspace after the import: " +␣

→˓str(len(asCurrentFiles)))

except Exception as oE:
wasdi.wasdiLog("Error " + str(oE))
wasdi.updateStatus('ERROR')
sys.exit(1)

wasdi.wasdiLog('Done bye bye')
wasdi.updateStatus('DONE', 100)

if __name__ == '__main__':
wasdi.init('./config.json')
run()

Note that, while you are importing images, if you open the workspace on WASDI, you will see your operations on
going.

Welcome to space.

4.4. Search and Import EO Images 161

WASDI documentation center

4.4.8 Search Parameter Documentation

Sentinel-1 Parameters

.filename: This is the Satellite Platform. It can be of type “S1A” or “S1B”.

.producttype: This is the Product Type. It can be of type “SLC”, “GRD” or “OCN”.

.polarisationmode: This is the Polarisation. It can be of type “HH”, “VV”, “HV”, “VH”, “HH+HV”, “VV+HH”.

.sensoroperationalmode: This is the Sensor Mode. It can be of type “SM”, “IW”, “EW”, or “WV”.

.relativeorbitnumber: This is the Relative Orbit Number. It can be an integer from 1 to 175.

**.swathidentifier: ** This is the Swath.

Sentinel-2 Parameters

.filename: this is the Satellite Platform. It can be of type “S2A” or “S2B”.

.producttype: this is the product type. It can be of type “S2MSI1C”, “S2MSI2Ap” or “S2MSI2A”.

.cloudcoverpercentage: this is the Cloud Coverage Percentage. It can be an integer range from 0 to 100 - including
float numbers (e.g., 0 to 9.4).

Sentinel-3 Parameters

.productlevel: this is the product level. It can be of type “L1” or “L2”.

.insturment: This is the Insturment. It can only be of type “SRAL”.

.producttype: This is the Product Type. Its value is determined by the following conditions:

• If .productlevel is set to “L1” it can be of type “SR_1_SRA___”, “SR_1_SRA_A_” or “SR_1_SRA_BS”.

• If .productlevel is set to “L2” it can be of type “SR_2_LAN___”

.timeliness: This is the Timeliness. It can be of value “Near Real Time”, “Short Time Critical”, or “Non Time Critical”.

.realtiveorbitstart: this is the Relative Orbit Start. The value can be an integer from 1 to 385.

Sentinel-5P Parameters

.productlevel: This is the product level. It can be of value “LEVEL1B” or “LEVEL2”.

.producttype: This is the Product Type. Its value is determined by the following conditions:

• If .productlevel is set to “LEVEL1B, the value can be “L1B_IR_SIR”, “L1B_IR_UVN”, “L1B_RA_BD1”,
“L1B_RA_BD2”, “L1B_RA_BD3”, “L1B_RA_BD4”, “L1B_RA_BD5”, “L1B_RA_BD6”, “L1B_RA_BD7”,
“L1B_RA_BD8”, or “AUX_CTMFCT”, “AUX_CTMANA”

• If .productlevel is set to “LEVEL2”, then the value of .producttype can be: “L2__AER_AI”, “L2__AER_LH”,
“L2__CH4___”, “L2__CLOUD_”, “L2__CO____”, “L2__HCHO__”, “L2__NO2___”, “L2__NP_BD3”,
“L2__NP_BD6”, “L2__NP_BD7”, “L2__O3_TCL”, “L2__O3____”, “L2__SO2___”, “AUX_CTMFCT”, or
“AUX_CTMANA”

.timeliness: This is the Timeliness. It can be of value “Offline”, “Near real time”, or “Reprocessing”.

.absoluteorbit: This is the Absolute Orbit Number.

162 Chapter 4. Add your App to WASDI

WASDI documentation center

PROBA-V Parameters

.collection: This is the Collection. The value can be “urn:ogc:def:EOP:VITO:PROBAV_S1-TOC_333M_V001”,
“urn:ogc:def:EOP:VITO:PROBAV_S10-TOC_333M_V001”, or “urn:ogc:def:EOP:VITO:PROBAV_S5-TOC_
100M_V001”

.cloudcoverpercentage: This is the Cloud Coverage Percentage. It can be set to a range of 0 to 100 (e.g., 0 to 9.4).

.snowcoverpercentage: This is the snowcoverpercentage. It can be set to a range of 0 to 100 (e.g., 0 to 9.4).

.productref: This is the product ref.

.cameraId: This is the Camera Id.

.productID: This is the Product ID.

.year: This is the year.

.Insturment: This is the Insturment. It can be of value “VG1” or “VG2”.

Envisat Parameters

.name: This is the Type. It can be of value “ASA_IM__0P”, or “ASA_WS__0P”.

.orbitDirection: This is the Orbit Direction. It can be of value “ASCENDING” or “DESCENDING”

Landsat8 Parameters

.name: This is the Type. It can be of value “L1T”, “L1G”, “L1GT”, “L1GS”, “L1TP”.

.cloudcoverpercentage: This is the Cloud Cover Percentage. It can be set to a range of 0 to 100 (e.g., 0 to 94).

VIIRS Parameters

.producttype: This is the Product. It can be of value “VIIRS_1d_composite” or “VIIRS_5d_composite”.

ERA5 Parameters

.dataset: This is the Dataset. It can be of value “reanalysis-era5-pressure-levels” or “reanalysis-era5-single-levels”.

.productType: This is the Product Type.

• If .dataset is set to “reanalysis-era5-pressure-levels” then the .producttype can be of value “reanalysis”, “ensem-
ble_mean”, “ensemble_members”, or “ensemble_spread”.

• If .dataset is set to “reanalysis-era5-single-levels” then the .producttype can be of value “reanalysis”, “ensem-
ble_mean”, “ensemble_members”, or “ensemble_spread”.

.pressureLevels: This is the Pressure Levels in hPa. If .dataset is set to “reanalysis-era5-pressure-levels” then the value
of .pressureLevels can be “1”, “2”, “1+2”, or “1000”.

.variables: This is the Variables.

• If .dataset is set to “reanalysis-era5-pressure-levels” then the value of .variables can be “RH”, “U”, “V”, or
“RH+U+V”.

• If .dataset is set to “reanalysis-era5-single-levels” then the value of .variables can be “SST+SP+ST” or
“10U+10V+2DT+2T+SP”.

.format: This is the Format. It can be of value “grib” or “netcdf”.

4.4. Search and Import EO Images 163

urn:ogc:def:EOP:VITO:PROBAV_S1-TOC_333M_V001
urn:ogc:def:EOP:VITO:PROBAV_S10-TOC_333M_V001
urn:ogc:def:EOP:VITO:PROBAV_S5-TOC_100M_V001
urn:ogc:def:EOP:VITO:PROBAV_S5-TOC_100M_V001

WASDI documentation center

CAMS Parameters

.dataset: This is the Dataset and can be of value “cams-global-atmospheric-composition-forecasts”.

.type: This is the Type. If the .dataset is set to “cams-global-atmospheric-composition-forecasts” then the value can
be “forecast”.

.variables: This is the Variables. If the .dataset is set to “cams-global-atmospheric-composition-forecasts” then the
value will be set to “dust_aerosol_optical_depth_550nm”.

.format: This is the Format. It can be of value “grib” or “netcdf_zip”.

PLANET Parameters

.producttype: This is the Planet Item Type. It can be of value “PSScene”, “PSScene3Band”, “PSScene4Band”,
“PSOrthoTile”, “REOrthoTile”, “REScene”, “SkySatScene”, “SkySatCollect”, or “SkySatVideo”.

DEM Parameters

.dataset: This is the Dataset. It can be of value “DEM_30M” or “DEM_90M”.

WorldCover Parameters

.dataset: This is the Dataset. It can be of value “10m_2020_V1”.

StaticFiles Parameters

.producttype: This is the Product Type. It can be of either value “ESA_CCI_LAND_COVER_2015” or “ESACCI-
Ocean-Land-Map-150m-P13Y-2000”.

IMERG Parameters

.latency: This is the Latency. It can be of value “Early” or “Late”.

.duration: This is the Duration. Its value is based on the following conditions:

• If .latency is set to “Early” .duration can have a of value “HHR”.

• If .latency is set to “Late” .duration can have a value of “HHR”, “DAY”, or “MO”

.accumulation: This is the Accumulation. Its value is based on the following conditions:

• If .latency is set to “Early” and .duration is set to “HHR” then .accumulation can have a value of “30min”, “1day”,
“3hr”, or “All”.

• If .latency is set to “Late” and .duration is set to “HHR” then .accumulation can have a value of “30min”, “1day”,
“3day”, “7day”, “3hr” or “All”.

164 Chapter 4. Add your App to WASDI

WASDI documentation center

CM Parameters

.producttype: This is the Product Type. It can have a value of

• “OCEANCOLOUR_MED_CHL_L4_NRT_OBSERVATIONS_009_041-TDS”,

• “OCEANCOLOUR_GLO_BGC_L4_MY_009_108-TDS”,

• “SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012-TDS”,

• “SST_MED_SST_L4_NRT_OBSERVATIONS_010_004-TDS”,

• “GLOBAL_ANALYSIS_FORECAST_WAV_001_027-TDS”,

• “INSITU_MED_NRT_OBSERVATIONS_013_035”, or

• “OCEANCOLOUR_GLO_CHL_L3_NRT_OBSERVATIONS_009_032-TDS”

.protocol: This is the Protocol. If .producttype has a value matching any from the list below, then .protocol can have
a value of either “SUBS” or “FTP”.

• OCEANCOLOUR_MED_CHL_L4_NRT_OBSERVATIONS_009_041-TDS

• OCEANCOLOUR_GLO_BGC_L4_MY_009_108-TDS

• SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012-TDS

• SST_MED_SST_L4_NRT_OBSERVATIONS_010_004-TDS

• GLOBAL_ANALYSIS_FORECAST_WAV_001_027-TDS

• OCEANCOLOUR_GLO_CHL_L3_NRT_OBSERVATIONS_009_032-TDS

If .product type is set to the value “INSITU_MED_NRT_OBSERVATIONS_013_035” then .protocol can have a value
of “FTP”.

.dataset: This is the Dataset. Its possible value is determined by these following conditions:

• If the .producttype has a value of “OCEANCOLOUR_MED_CHL_L4_NRT_OBSERVATIONS_009_041-
TDS” then .dataset can have a value of one of the following:

– “dataset-oc-med-chl-multi-l4-chl_1km_monthly-rt-v02”

– “dataset-oc-med-chl-multi-l4-interp_1km_daily-rt-v02”

– “dataset-oc-med-chl-olci_a-l4-chl_1km_monthly-rt-v02” or

– “dataset-oc-med-chl-olci-l4-chl_300m_monthly-rt”

• If the .producttype has a value of “SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012-TDS” then .dataset
can have a value of either:

– “SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012_a” or

– “SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012_b”

• If .producttype is set to “SST_MED_SST_L4_NRT_OBSERVATIONS_010_004-TDS” then .dataset can have
a value of:

– “SST_MED_SST_L4_NRT_OBSERVATIONS_010_004_a_V2”

– “SST_MED_SST_L4_NRT_OBSERVATIONS_010_004_c_V2”

– “SST_MED_SSTA_L4_NRT_OBSERVATIONS_010_004_b” or

– “SST_MED_SSTA_L4_NRT_OBSERVATIONS_010_004_d”

• If the .producttype has a value of “GLOBAL_ANALYSIS_FORECAST_WAV_001_027-TDS” and .protocol is
set to “SUBS” then .dataset can havea value of “global-analysis-forecast-wav-001-027”.

4.4. Search and Import EO Images 165

WASDI documentation center

• If the .producttype is set to “GLOBAL_ANALYSIS_FORECAST_WAV_001_027-TDS” and .protocol is set to
“FTP” then .dataset can have a value of:

– “global-analysis-forecast-wav-001-027” or

– “global-analysis-forecast-wav-001-027-statics”

• If the .producttype is “INSITU_MED_NRT_OBSERVATIONS_013_035” and the .protocol is “FTP” then the
value of .dataset can be “med_multiparameter_nrt”.

• If .producttype is set to “OCEANCOLOUR_GLO_CHL_L3_NRT_OBSERVATIONS_009_032-TD” then the
value of .datset can be “dataset-oc-glo-bio-multi-l3-chl_300m_daily-rt”.

.variables: This is the Variables. The possible values of .variabls is determined by the following conditions:

• If .protocol is set to “SUBS” AND .dataset is set to one of the following, then the value of variables can be
“CHL+CHL_count+CHL_error”, “CHL”, “CHL_count” or “CHL_error”.

• If .dataset is set to “dataset-oc-med-chl-multi-l4-interp_1km_daily-rt-v02” and .protocol is set to “SUBS” then
the value of .variables can be “CHL”.

• If .dataset is set to “c3s_obs-oc_glo_bgc-plankton_my_l4-multi-4km_P1M” and .protocol is set to “SUBS”
then the value of .variables can be “CHL+CHL_count+CHL_error+grid_mapping”, “CHL”, “CHL_count”,
“CHL_error”, or “grid_mapping”.

• If .protocol is set to “SUBS” and .dataset is set either “SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012_a”
or “SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012_b” then variables can have a value of one of the
following:

– “adjusted_sea_surface_temperature+quality_level+sea_surface_temperature+source_of_sst”,

– “adjusted_sea_surface_temperature|quality_level”

– “sea_surface_temperature”, or

– “source_of_salt”

• If .protocol is set to “SUBS” and .dataset is set to either “SST_MED_SST_L4_NRT_OBSERVATIONS_010_004_a_V2”
or “SST_MED_SST_L4_NRT_OBSERVATIONS_010_004_c_V2” then .variables can have a value of one of
the following:

– “analysed_sst+analysis_error”

– “analysed_sst”, or

– “analysis_error”:

• If .protocol is set to “SUBS” and .dataset is set to either “SST_MED_SSTA_L4_NRT_OBSERVATIONS_010_004_b”
or “SST_MED_SSTA_L4_NRT_OBSERVATIONS_010_004_d” then .variables can have a value of
“sst_anomaly”.

• If .dataset is set to “global-analysis-forecast-wav-001-027” and .protocol is set to “SUBS” then .varaibles can
have a value of one of the following:

– VHM0+VHM0_SW1+VHM0_SW2+VHM0_WW+VMDR+VMDR_SW1+VMDR_SW2+VMDR_WW+
VPED+VSDX+VSDY+VTM01_SW1+VTM01_SW2+VTM01_WW+VTM02+VTM10+VTPK

– VHM0

– VHM0_SW1

– VHM0_SW2

– VHM0_WW

– VHDR

166 Chapter 4. Add your App to WASDI

WASDI documentation center

– VMDR_SW1

– VMDR_SW2

– VMDR_WW

– VPED

– VSDX

– VSDY

– VTM01_SW1

– VTM01_SW2

– VTM01_WW

– VTM02

– VTM10

– VTPK

• If .dataset has a value of “dataset-oc-glo-bio-multi-l3-chl_300m_daily-rt” and .protocol is set to “SUBS” then
.variables can have a value of one of the following:

– HL+CHL_error+CHL_flags

– CHL

– CHL_error

– CHL_flags

ECOSTRESS Parameters

.dataset: This is the Dataset. It can have a value of one of the following:

• EEHCM

• EEHSEBS

• EEHSTIC

• EEHSW

• EEHTES

• EEHTSEB

.relativeorbitnumber: This is the Orbit Range. It can have a value of an integer from 1 to 19999.

.parameteName: This is the Parameter. It can have a value of either “Day” or “Night”.

.dayNightFlag: This is the DayNightFlag. It can have a value of either “L1B_RAD” or “Night”.

4.4. Search and Import EO Images 167

WASDI documentation center

4.5 Configuration tutorial

4.5.1 Introduction

The present Tutorial showcase all the feature available in the WASDI configuration file. The config file is required to
connect the running instance of your code with WASDI services.

Note: This page reports all the features with complete description, if you just need a quick reference or a starting point
please refer to config quickstart

This tutorial showcase all the available features with working example, explaining all the available fields and their
usage. As a reference library, waspy python library is used but the same concepts applies for all wasdi libraries.

Note: The configuration file contains your credentials and some additional information to get WASDI started: never
share it with others! It is required only for developing on your PC, so do not upload it to WASDI when deploying or
updating an application

4.5.2 Login parameters

WASDI allows a simple transition from local execution on your machine to the execution in the cloud, leveraging
powerful dedicated cloud resources and faster interactions with data.

In order to start a new session with WASDI web services users can login to WASDI web services by invoking the login
method. If no parameters are passed the library will ask for credentials on the console where the code is executed.

Another possibility is to rely on the config.json file. This file can be read by using the init method. Upon initialization,
the library search for credentials inside the configuration passed and proceed to create a new session for the user.

Note: Please remember that the config file follows the JSON syntax specification. Please check the syntax to adhere
such specification.

4.5.3 Workspace initialization

After login, config.json file can be used to open a specific workspace and start on working there. The reference can be
done by using the workspace name OR the workspace Id.

Here’s an example of the field included in a config file:

{
"WORKSPACE" : "workspace Name",

"WORKSPACEID" : "workspaceId"
}

The workspace id can be found in WASDI application both on navigation bar or inside workspace details window.

168 Chapter 4. Add your App to WASDI

WASDI documentation center

Note: In case both parameters, name and id, are specified only workspace name is taken in consideration.

4.5.4 Parameters dictionary

In order to make your WASDI application completely configurable, it is possible to embed a custom dictionary for the
execution. This can be very flexible and useful, by instance, to parametrize some part of your algorithms and checks
the results on different setup.

The dictionary use itself the JSON syntax and can contains any number of custom field. Such parameters can be stored
on a separated JSON file and in order to be loaded, can be specified the path to the particular file.

To load a parameter dictionary the config file can specify the PARAMETERSFILEPATH field

{

"PARAMETERSFILEPATH" : "./params.json"

}

In this example we are using file named params.json in the same folder of the python script with the following content:

{
"First_Param" : "First_Value",

"Second_Param" : 42

}

In the following of your code such values can be used by invoking, for example the getParameter() method:

4.5. Configuration tutorial 169

WASDI documentation center

print(wasdi.getParameter("First_Param"))

print(wasdi.getParameter("Second_Param"))

The execution of the above code will simply print on the command line the values specified from the params.json file.

4.5.5 Download/Upload activation

In local environment it is possible to enable or disable both the upload and download of resources. To control this
aspect please check the following field of the config file:

{
"DOWNLOADACTIVE" : true

"UPLOADACTIVE" : false
}

Both parameters are boolean so please check the syntax for JSON format.

4.5.6 Logs verbosity

Upon execution of the code it is possible to control the verbosity.

Ideally during debugging of your scripts it is useful to have more details about the status of the running instance.
Instead, when the code is effectively deployed, the logs can be disabled by setting this field to false.

{
"VERBOSE" : false
}

Ideally during debugging of your scripts it is useful

to have more details about the status of the running instance. Instead, when the code is effectively deployed, the logs
can be disabled by setting this field to false.

4.5.7 Base path

This parameter control where the running instance of your application stores the workspaces and their relative assets
downloaded from WASDI.

If no path is specified this defaults to

• Linux: /home/[your user]/.wasdi

• Windows: C:\Users\[your user]\.wasdi

{
"BASEPATH" : "[Custom Directory]"
}

170 Chapter 4. Add your App to WASDI

WASDI documentation center

4.5.8 Advanced settings

The following parameters represents functionalities for an advanced usage of WASDI. Each parameters is hereby de-
scribed.

{
"BASEURL" : "baseUrl",

"REQUESTSTIMEOUT" : "requestsTimeout",

"SESSIONID" : "sessionId",

"MYPROCID" : "myProcId",

"ENABLECHECKSUM" : "enableChecksum"
}

BASEURL Controls the base address used to contact the WASDI services. In brief WASDI is multicloud and can
be executed in several different cloud enviroments: this parameter allows the developer contact various instances of
WASDI deployed on several different URLs.

REQUESTSTIMEOUT Allows the developer to setup the time, in seconds, before the call to WASDI api must respond
before the connection is dropped.

SESSSIONID This field allows to connect directly to WASDI services skipping the login process and supplying directly
a session id

MYPROCID Allows to force the Process ID within the workspace. All processes have a dedicated ID. In general this
id is a GUID generated at each launch. This field of the settings gives the possibility to the developer to force a custom
value.

ENABLECHECKSUM When dealing with EO product and in particular with their transfer between environments, it
can be useful to relies the checksum to check data integrity. When enabling this field the MD5 check sum is requested
to the WASDI instance and verified against the downloaded files.

4.5.9 Complete config.json reference

In the following a complete config.json file example is reported, showcasing all the possible parameters readable by
the libraries.

{
"USER" : "user",

"PASSWORD" : "password",

"WORKSPACE" : "workspace",

"WORKSPACEID" : "workspaceId",

"BASEPATH" : "basePath",

"PARAMETERSFILEPATH" : "parametersFilePath",

"DOWNLOADACTIVE" : true,

(continues on next page)

4.5. Configuration tutorial 171

WASDI documentation center

(continued from previous page)

"UPLOADACTIVE" : true,

"VERBOSE" : true,

"BASEURL" : "baseUrl",

"REQUESTSTIMEOUT" : "requestsTimeout",

"SESSIONID" : "sessionId",

"MYPROCID" : "myProcId",

"ENABLECHECKSUM" : true
}

4.6 Working with Workspaces and Products

This tutorial has to goal to intruduce the main functionality of the WASDI Libraries to work with workspaces (see
Wasdi Libraries Concepts for the main concepts).

4.6.1 Introduction

Workspaces are the space where you can import files, run applications, run workflows, run your code, create and add
your own files.

Each workspace has a Name, an Id (guid) and a owner.

Each workspace is hosted on a WASDI Computing node: this can be a shared node for generic users or a dedicated
Computing node for premium users.

Each workspace can be shared with other WASDI Users.

Developers can access their own workspaces or the workspaces other users shared with them.

4.6.2 Workspace functionalities

Using the libraries, a developer can:

• Get the id of the active workspace

• Get the name of a workpace from the Id or viceversa

• Open another workspace

• Get the list of user workspaces

172 Chapter 4. Add your App to WASDI

WASDI documentation center

4.6.3 Workspaces Sample Code

The following python app make some sample of what you can do with workspaces:

import wasdi

def run():

Get The Active Workspace Id
sWorkpaceId = wasdi.getActiveWorkspaceId()
wasdi.wasdiLog("WorkspaceId is: " + sWorkpaceId)

Get the name of a workspace from the id
sWorkspaceName = wasdi.getWorkspaceNameById(sWorkpaceId)
wasdi.wasdiLog("WorkspaceName is: " + sWorkspaceName)

Get all the user workspaces
aoWorkspaces = wasdi.getWorkspaces()
wasdi.wasdiLog("User has " + str(len(aoWorkspaces)) + " Workspaces")

get the last workspace (we have at least one, this one!)
oLastWorkspace = aoWorkspaces[len(aoWorkspaces)-1]
wasdi.wasdiLog("Last Workspace is: " + oLastWorkspace["workspaceName"])

Open the last workspace
sNewWorkspaceId = wasdi.openWorkspace(oLastWorkspace["workspaceName"])
if sNewWorkspaceId == "":

wasdi.wasdiLog("Error opening the last workspace")
else:

wasdi.wasdiLog("Now active workspace is " + wasdi.getActiveWorkspaceId())

Re open the original workspace
wasdi.openWorkspaceById(sWorkpaceId)
wasdi.wasdiLog("Re Opened the original workspace " + wasdi.

→˓getWorkspaceNameById(wasdi.getActiveWorkspaceId()))

if __name__ == '__main__':
wasdi.init('./config.json')
run()

At the beginning we read the Id of the active workspace (getActiveWorkspaceId). This is defined in the config file and
is the workspace where your code is running. Then we get the name of this workspace (getWorkspaceNameById).

We want next to get the list of the users’ workspaces (getWorkspaces): this method returns a list of dictionaries: each
object has these properties

"ownerUserId":STRING,
"sharedUsers":[STRING],
"workspaceId":STRING,
"workspaceName":STRING

Next step is to open another workspace (openWorkspace): this method returns the workspaceId if ok, an empty string in
case of error. Finally, we come back to our original workspace using the id we collected before (openWorkspaceById)
and verify using its name (getWorkspaceNameById).

4.6. Working with Workspaces and Products 173

WASDI documentation center

The output will be something similar to this: .. code-block:

WorkspaceId is: a5dc8f79-3e89-46b5-8d39-169e9ecb0a98
WorkspaceName is: TutorialWorkspace
User has 108 Workspaces
Last Workspace is: S3_Day_ActiveFire
Now active workspace is ab34e55b-d233-466b-983e-223b42915869
Re Opened the original workspace TutorialWorkspace

4.6.4 Products functionalities

The functionalities to work with products are:

• get the list of products in a workspace

• check if a product is in the workspace or not

• get the local path of the product

• add a new product to the workspace

4.6.5 Products Sample Code

The following python app make some sample of what you can do with products.

To make it run, you should create a workspace and put there at least one file using the WASDI Search web user interface
or the upload.

Please note that this code can take some time to be executed the first time you run it beacuse it shows how to access file
locally (so download) and to upload results in WASDI.

Note: The goal of this tutorial is not to manipulate files so, the “new” file, is created just making a copy of an existing
one with a different name.

import wasdi
import os
from shutil import copyfile

def run():

Get the list of file names
aoProducts = wasdi.getProductsByActiveWorkspace()
wasdi.wasdiLog("In the workspace we have " + str(len(aoProducts)))

Make sure we have at least one
if len(aoProducts)>0:

Double check
bCheck = wasdi.fileExistsOnWasdi(aoProducts[0])
wasdi.wasdiLog("Product " + aoProducts[0] + " is on workspace? " +␣

→˓str(bCheck))

This line will return the local path: it assume you need it to open␣
→˓the image, so the first time will automatically download the image

(continues on next page)

174 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

sLocalPath = wasdi.getPath(aoProducts[0])

Generate the name of a new file, not existing yet: start taking the␣
→˓original file without extension

sCopyLocalPath = os.path.splitext(sLocalPath)[0]
add _copy and re-put extension
sCopyLocalPath = sCopyLocalPath + "_copy" + os.path.

→˓splitext(sLocalPath)[1]
Make a local copy, as it was another file
copyfile(sLocalPath, sCopyLocalPath)

Get only the file name
sCopiedFileName = os.path.basename(sCopyLocalPath)
wasdi.wasdiLog("We 'created' a second new file: " + sCopiedFileName)
Add the file to wasdi: this will upload the new file to the cloud
wasdi.addFileToWASDI(sCopiedFileName)

wasdi.wasdiLog("Tutorial Done!")

if __name__ == '__main__':
wasdi.init('./config.json')
run()

The code starts taking a list of the products in the workspace (getProductsByActiveWorkspace). Just to show the
functionality, it then checks if the first file is really available on WASDI (fileExistsOnWasdi).
The next step is to simulate a local file access: to open a file, you need a full local path: this must be requested to
WASDI (getPath).

The same function can be used also to obtain a path to use to save your own file: our code just makes a copy of a file
in a workspace with another name, using again getPath to have to path to use to save the file.

This copy is a new file for WASDI: to add it to the workspace use addFileToWASDI: please note that add file to
WASDI takes as input only the file name and not the full path.

4.7 Synchronous and Asynchronous WASDI programming

4.7.1 Introduction

This tutorial is designed to explain in detail the Processes life cycle of WASDI, the meaning and difference between
synch and asynch programming.

In this tutorial we use PyCharm as a free Python Development tool, but the code can be ran on every different Python
environment.

It is out of scope of this Tutorial how to set up the environment and start programming with WASDI. For this you can
refer to:

• Wasdi Libraries Concepts

• Python Tutorial

4.7. Synchronous and Asynchronous WASDI programming 175

WASDI documentation center

4.7.2 WASDI Processes

WASDI supports different operations. Each operation is called Process Workspace, since it is a process that is executed
in a Workspace.

Operations are a sort of Class, while Process Workspaces are Objects; the operations are what WASDI can do, a Process
Workspace is an instance of one operation in a Workspace.

WASDI Operations are (the list is indicative):

• Download: more in general fetch of a Product (Image) in WASDI. The image can be really downloaded or
accessed using the file system, depending by the Data Type and the cloud that host the computing node

• Ingest: this is the import of an image uploaded by the user or generated by an application

• Run Processor: with a sub type for each languange, is the operation that runs a user supplied application

• Graph: executes a SNAP graph on the cloud

• Mosaic: mosaic different products in a single new product

• Multisubset: subset one single image in one or more subsets (smaller parts of the original image)

• Sen2Core: executes the SNAP sen2core processor on the cloud

There are other operations that are more useful for the platform that for the developers and are out of the scope of this
tutorial.

Each WASDI process has a state. The processes states are:

• CREATED: each process workspace, when is triggered, goes in the CREATED state waiting for the scheduler
to run it

176 Chapter 4. Add your App to WASDI

WASDI documentation center

• RUNNING: the process is up and running

• WAITING: the process is waiting for some other operation (process workspace) to finish

• READY: the process finshed to wait for other operation and now is waiting for the scheduler to restart it

• DONE: the process finished with success

• STOPPED: the process has been stopped by the user or by some timeout

• ERROR: the process ended in error

These states are handled like a String, in all the libraries. Some methods can return the status of an operation or set it;
in both cases the state is a string.

We can divide these states in three categories:

• Pre Execution: CREATED is the only pre-execution state

• During Execution: RUNNING, WAITING and READY are the three states that means that the operation is
executing

• Post Execution: DONE, STOPPED and ERROR are the thress states that means that the operation is finished

4.7.3 Synchronous vs Asynchronous

Synchronous and Asynchronous are concepts that are valid in all the IT development world, not only in WASDI.

With Synchronous, we mean that process A starts operation B and the execution of process A does not proceeed until
operation B is finished.

With Asynchronous, we mean that process A starts operation B and the execution of process A proceeed immediatly
without waiting that operation B is finished.

These concepts are very important to optimize applications, specially in a cloud environment like WASDI where, your
application, if it is ‘well written’ in terms of synch or asynch operations, can scale up very quickly and use the
full power of the cloud.

In general, you need to use synch operations if the result of the operation you are running is needed to proceed and you
can not do nothing else in the meanwhile.

You are suggested to use asynch operations when you do not need immediatly the result of the operation to proceeed
while in the meanwhile you can to something else.

In general, in WASDI, almost all the operations have two version: Operation and asynchOperation. For example we
can use:

#Synch Version
wasdi.importProduct(oProduct)

or

#Asynch Version
wasdi.asynchImportProduct(oProduct)

All the synch versions, returns a string (or an array of strings) with the output status of the requested operation.

All the asynch versions, returns a string (or an array of strings) with ProcessWorkspaceId of the triggered operation.

Since each rule is done to be broke, All BUT ONE: executeProcessor, to run another wasdi app from your code, is
ALWAYS an asynch call.

There are two methods in the library that can be used to re-syncronize the execution after the use of asynch operation:

4.7. Synchronous and Asynchronous WASDI programming 177

WASDI documentation center

#Wait a single process: takes in input a string with the procId of the process to wait
wasdi.waitProcess(sProcessId)

#Wait a list processes: takes in input an array of strings with the procId of the␣
→˓processes to wait
wasdi.waitProcess(arrayOfProcessIds)

Both functions returns the state of the processes in input: this will be one of the Post Execution States (“DONE”,
“ERROR” or “STOPPED”).

4.7.4 Download Sample

Lets imagine that our application needs to import some images and apply some algorithm. We can imagine two situa-
tions to show the difference between synch and asynch operations.

Let start with the case where our applications needs only one specific image in input: in this case, the image is needed. . .
we need to import it and then we need to wait. Nothing to do. For this example, we make a search and then we use the
first found image.

#Search Images
aoFound = wasdi.searchEOImages("S1", sDateFrom="2021-02-01", sDateTo="2021-02-02",␣
→˓sProductType="GRD", fULLat=44.5, fULLon=8.5, fLRLat=44.0, fLRLon=9.0)
Double check we have one
if len(aoFound) > 0:

wasdi.wasdiLog("Import Image 0")
#Import the image
sState = wasdi.importImage(aoFound[0])
wasdi.wasdiLog("Import finished with status: " +sState)

If you run this snipped of code, you will see that execution breaks at the importImage line; you can check live on the
wasdi user interface that in that workspace wasdi will start a download and, when is done, the control of the code will
return to the log line.

Lets imagine instead that we need to retrive the full list of products. In this case, if we use the synch version, WASDI
will trigger the execution of one download per time and will not use the ability of the cloud. Instead, if we use an
asynch version, we can request all our list of images and then wait for all them to finish: in this case we push WASDI
to download in parallel as many images as possibile:

#Search Images
aoFound = wasdi.searchEOImages("S1", sDateFrom="2021-02-01", sDateTo="2021-02-02",␣
→˓sProductType="GRD", fULLat=44.5, fULLon=8.5, fLRLat=44.0, fLRLon=9.0)

Here we will keep the list of process id that we started
asOperationsIds = []

Double check we have one
if len(aoFound) > 0:

#For all our found images
for oProduct in aoFound:

wasdi.wasdiLog("Import Image " + oProduct["fileName"])
Start the import the image without waiting
sOperationId = wasdi.asynchImportImage(oProduct)
Add the proc id to the list of the ones we need to wait

(continues on next page)

178 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

asOperationsIds.append(sOperationId)

This line will be executed without waiting the images
wasdi.wasdiLog("All import triggered, wait images")
Now, we stop and wait
wasdi.waitProcesses(asOperationsIds)
This line will be executed when all are imported
wasdi.wasdiLog("All images imported")

This code snippet is for didacting reason only: this functionality is already implemented in WASDI in a single function
of the lib.

#Search Images
aoFound = wasdi.searchEOImages("S1", sDateFrom="2021-02-01", sDateTo="2021-02-02",␣
→˓sProductType="GRD", fULLat=44.5, fULLon=8.5, fLRLat=44.0, fLRLon=9.0)

Import all the images using the max power of the cloud
wasdi.importProductList(aoFound)

This line will be executed when all are imported
wasdi.wasdiLog("All images imported")

4.7.5 Start Other Applications

One of the most powerful feature of WASDI is the ability from one application to call another one. First of all, this
means that in WASDI we have a full language interoperability: it does not matter in which language you are devoloping,
you can call apps made in IDL, Java, Python or Matlab with the same syntax and same results.

As for your application the input is represented by your params.json, the same is for the others.

So to call another application in WASDI, you have to prepare a Dictionary that has a key for each parameter of the
application you want to call, and assign the relative desired value.

Applications has two view in WASDI: * App Store: is the Space Market of WASDI, desinged for end users * Advanced
App view: from the Edit section (just open a workspace), you can access the Apps view

4.7. Synchronous and Asynchronous WASDI programming 179

WASDI documentation center

From the apps view usually, each developer declares the sample json input required:

In the image, the hellowasdiworld app shows that takes a NAME parameter as input.

Usually, developers also add an help file to their applications where they declare the different parameters.

These are the info you need to call another app.

As it has been stated before, to execute another application is always an asynch operation.

#Prepare Params
helloParams = {}
helloParams["NAME"]="Synch Asynch Tutorial"

#Call the hellowasdiworld application
sProcessId = wasdi.executeProcessor("hellowasdiworld", helloParams)

(continues on next page)

180 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

#Here you can do anything else!

#Wait for the application to finish
wasdi.waitProcess(sProcessId)

wasdi.wasdiLog("Hello WASDI World finshed")

This snippet of code is the core for the optimization of your application.

4.7.6 Suggested WASDI App Organization

In our experience the best way to develop your wasdi application is an old advise: “Dividi et Impera”.

Usually WASDI applications are developed to manipulate satellite data to obtain a value added product in output.

To obtain the value added product, your algorithm may need to take in input on single image, or a pair, or a list of
images. In any case, usually, you can individuate the base brick of your algorithm that takes in input only the images
needed and produces one or more output.

The suggestion is to start writing this first base processor: it can be developed and tested manually, using WASDI web
interface to search, upload, import, preprocess or whatever is needed to prepare the input for you. The params.json
should declares the images needed in input and any other specific param of your algorithm.

Once this processor is ready, an automation processor can be build upon it: usually, the automation processor, takes in
input date an bounding box and not the exact image to use: in this wrapper-processor you can search EO Images, filter
results, apply workflows, mosaic, subsets, conversions, whatever is needed to run your base processor.

When the data is ready, you can start in parallel as many instances as possibile of your base processor and then wait
for all the different instances to finish and, maybe, if needed, mosaic or summarize the results that you will find in the
workspace.

Using this technique usually let you take the best advantage from the execution of your code in the cloud. Also, it
ensure you to have your code more portable: the base application takes in input only file names and can be quickly
adapted to other systems or platforms, and you can isolate your dependency by WASDI only in the automation code.

Welcome to Space, Have fun!

4.8 C# Tutorial

4.8.1 Prerequisites

Note: To make the most of this tutorial, prior experience with the WASDI platform is required.

For new users, it is highly recommended to follow the Wasdi Web Platform access and basic usage tutorial before
continuing.

4.8. C# Tutorial 181

https://wasdi.readthedocs.io/en/latest/WasdiTutorial.html

WASDI documentation center

4.8.2 Setup

Setup on Wasdi web-app side

Open the Wasdi web-application in a browser by typing https://www.wasdi.net/.

On the main page, the marketplace is shown (Space Market).

182 Chapter 4. Add your App to WASDI

https://www.wasdi.net/

WASDI documentation center

Go to the Workspaces page by pressing the Workspaces button.

Create a new workspace by pressing the New Workspace button.

On the pop-up window, specify the name of the new workspace and press OK. For this tutorial, I will choose Tutori-
alWorkspace.

Note: Although it is not mandatory, it is strongly recommended to use the indicated name. This would allow the code
to be copy/pasted without adjustments.

The newly created workspace is shown on the main page.

4.8. C# Tutorial 183

WASDI documentation center

Setup on Microsoft’s Visual Studio side

Open Microsoft’s Visual Studio

184 Chapter 4. Add your App to WASDI

WASDI documentation center

Create a new project (Console App).

For this tutorial, choose TutorialSeeSharpApp.

Note: Although it is not mandatory, it is strongly recommended to use the indicated name. This would allow the code
to be copy/pasted without adjustments.

4.8. C# Tutorial 185

WASDI documentation center

Choose the desired framework. I will accepted the default option (.NET 6.0).

186 Chapter 4. Add your App to WASDI

WASDI documentation center

Pressing the Create button, as the setup is complete, the MS Visual Studio will open the project.

Create a full-fledged main class. Use the URL provided to obtain the code. Copy and paste it to replace the generated
stub.

Change the name name of the namespace to match the name of the project (TutorialSeeSharpApp).

4.8. C# Tutorial 187

WASDI documentation center

namespace TutorialSeeSharpApp
{

internal class Program
{

static void Main(string[] args)
{

Console.WriteLine("Hello World!");
}

}
}

Run the program to verify that everything is fine.

4.8.3 Work with WASDI

Add the WasdiLib dependency to your application

Note: The code showed in this section can also be found on the dedicated public GitHub repository: https://github.
com/wasdi-cloud/TutorialSeeSharpApp.

Find the WasdiLib on NuGet. Open a page in a browser and navigate to https://www.nuget.org/packages/WasdiLib.

188 Chapter 4. Add your App to WASDI

https://github.com/wasdi-cloud/TutorialSeeSharpApp
https://github.com/wasdi-cloud/TutorialSeeSharpApp
https://www.nuget.org/packages/WasdiLib

WASDI documentation center

Copy the installation commad for the latest version (by pressing the orange button):

Install-Package WasdiLib -Version 0.0.3.5

Open the NuGet Package Manager console (Tools > NuGet Package Manager) and paste in the command just copied.

Install the WasdiLib as a dependency of your console application.

4.8. C# Tutorial 189

WASDI documentation center

Alternatively, the WasdiLib can be installed through NuGet Package Manager (Tools > Manage NuGet Packages for
Solution).

190 Chapter 4. Add your App to WASDI

WASDI documentation center

Create configuration files

Create appsettings.json

To add a file to the application, right click on the TutorialSeeSharpApp.

Select Add and then New Item.

4.8. C# Tutorial 191

WASDI documentation center

Select the type of file and input the name.

The appsettings.json file contains the information required to connect to the Wasdi server. In absence of such infor-
mation, the library cannot connect to the server, in development mode. Once the application is deployed on the Wasdi
server, it will obtain the required information from the user session. Therefore, for development use, please do not
forget to input your credentials on the appsettings.json file.

{
"USER": "your_username",
"PASSWORD": "your_password",
"BASEPATH=": "C:/temp/wasdi/",
"BASEURL": "https://www.wasdi.net/wasdiwebserver/rest",
"WORKSPACE": "TutorialWorkspace",
"PARAMETERSFILEPATH": "./parameters.json"

}

192 Chapter 4. Add your App to WASDI

WASDI documentation center

Create parameters.json

The parameters.json file contains the information related to the operation conducted on the Wasdi server.

{
"DATEFROM": "2020-01-01",
"DATETO": "2020-01-31",
"BBOX": "46.0,7.0,44.0,12.0",
"WORKFLOW": "LISTSinglePreproc2"

}

Note: The properties of both these configuration files should be changed to trigger their copy each time the project is
built.

Repeat this procedure for both files (appsettings.json and parameters.json): On the right side-bar, click on Solution
Explorer. Select the file, right-click on it, Select the last option, Properties.

On the Advanced section, change the value of the property Copy to output directory to Copy always.

4.8. C# Tutorial 193

WASDI documentation center

Verify the setup

Call the /hello endpoint

The application can run locally as a stand-alone application (with a Main method). However, in order for the application
to run on the Wasdi platform, the class must meet two conditions:

• implement the IWasdiRunnable interface and override its Run method;

• have a no-arg constructor (if the class does not have an explicit constructor, the compiler will add a default no-arg
constructor at compile time);

Note: It is strongly recommended for the application to have the structure shown below.

To connect to the Wasdi server through the WasdiLib, an object of type Wasdi must be created and initialized in the
Main method and passed as an argument to the Run method. The verbosity of the logging mechanism could be
increased, in order to see on the console the result.

The actual call to the Wasdi object should be done either form inside the Run method or from any other method called
by Run.

using WasdiLib;

namespace TutorialSeeSharpApp
{

internal class Program : IWasdiRunnable
{

static void Main(string[] args)
{

Wasdi wasdi = new();
wasdi.Init();
wasdi.SetVerbose(true);

(continues on next page)

194 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

Program program = new Program();
program.Run(wasdi);

}

public void Run(Wasdi wasdi)
{

wasdi.WasdiLog(wasdi.Hello());
}

}
}

The outcome of running the program locally is a console window showing the Wasdi greeting.

Note: The procedure to deploy the application on the WASDI platform is described later in this tutorial.

Running the same program on the Wasdi platform produces the following outcome.

4.8. C# Tutorial 195

WASDI documentation center

Get the user’s workspaces’ names

The following program retrieves the names of the workspaces that the user has access to. An user can access a workspace
either if the workspace was created by the user or if the workspace was shared by another user.

using WasdiLib;

namespace TutorialSeeSharpApp
{

internal class Program : IWasdiRunnable
{

static void Main(string[] args)
{

Wasdi wasdi = new();
wasdi.Init();
wasdi.SetVerbose(true);

Program program = new Program();
program.Run(wasdi);

}

public void Run(Wasdi wasdi)
{

GetWorkspacesNames(wasdi);
}

private static void GetWorkspacesNames(Wasdi wasdi)
{

wasdi.WasdiLog("GetWorkspacesNames():");
(continues on next page)

196 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

List<string> workspacesNames = wasdi.GetWorkspacesNames();

foreach (string workspaceName in workspacesNames)
{

wasdi.WasdiLog(workspaceName);
}

}
}

}

Runnig the program locally should show in the console the list of workspaces’ names. At least TutorialWorkspace
should be present.

Note: The procedure to deploy the application on the WASDI platform is described later in this tutorial.

Running the same program on the Wasdi platform produces the following outcome.

4.8. C# Tutorial 197

WASDI documentation center

Running the new C# application on Wasdi platform

It’s great to have the application running locally but the end-goal is to have the application running on Wasdi server.

Writing the application

In order to see the application producing some effects, two operations are triggerred: the execution of an workflow and
the execution of a processor.

using WasdiLib;
using WasdiLib.Models;

namespace TutorialSeeSharpApp
{

internal class Program : IWasdiRunnable
{

static void Main(string[] args)
{

Wasdi wasdi = new();
wasdi.Init();
wasdi.SetVerbose(true);

Program program = new Program();
program.Run(wasdi);

UpdateStatus(wasdi);
}

public void Run(Wasdi wasdi)
(continues on next page)

198 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

{
RunExecuteWorkflow(wasdi);

RunExecuteProcessor(wasdi);
}

private static void RunExecuteWorkflow(Wasdi wasdi)
{

string sStartDate = wasdi.GetParam("DATEFROM");
string sEndDate = wasdi.GetParam("DATETO");
string sBbox = wasdi.GetParam("BBOX");
string sWorkflow = wasdi.GetParam("WORKFLOW");

double dLatN = 44.0;
double dLonW = 35.0;
double dLatS = 45.0;
double dLonE = 36.0;

if (sBbox != null)
{

String[] asLatLons = sBbox.Split(',');
dLatN = Double.Parse(asLatLons[0]);
dLonW = Double.Parse(asLatLons[1]);
dLatS = Double.Parse(asLatLons[2]);
dLonE = Double.Parse(asLatLons[3]);

}

wasdi.WasdiLog("Start searching images");
List<QueryResult> aoResults = wasdi.SearchEOImages("S1",␣

→˓sStartDate, sEndDate, dLatN, dLonW, dLatS, dLonE, "GRD", null, null, null);
wasdi.WasdiLog("Found " + aoResults.Count + " Images");

if (aoResults.Count > 0)
{

wasdi.ImportProduct(aoResults[0]);

List<string> asInputs = new List<string>();
asInputs.Add(aoResults[0].Title + ".zip");

List<string> asOutputs = new List<string>();
asOutputs.Add("preprocessed.tif");

wasdi.ExecuteWorkflow(asInputs, asOutputs, sWorkflow);
}
wasdi.WasdiLog("FINISHED");

}

private static void RunExecuteProcessor(Wasdi wasdi)
{

// call another app: HelloWasdiWorld
Dictionary<string, object> dictionary = new Dictionary<string,␣

(continues on next page)

4.8. C# Tutorial 199

WASDI documentation center

(continued from previous page)

→˓object>()
{ { "name", wasdi.GetUser() } };

wasdi.ExecuteProcessor("HelloWasdiWorld", dictionary);
}

private static void UpdateStatus(Wasdi wasdi)
{

wasdi.WasdiLog("UpdateStatus:");
string sStatus = "DONE";
int iPerc = 100;
wasdi.UpdateStatus(sStatus, iPerc);

}
}

}

Note: For applications that require heavy processing, it is recommended not to run locally but exclusively on the
WASDI platform.

Packaging the application

To export the application, zip the content of the \bin\Debug\net6.0 directory, except for the configuration files (appset-
tings.json and parameters.json) and the ref directory. The zip archive should share the name of the application, in my
case TutorialSeeSharpApp.zip.

200 Chapter 4. Add your App to WASDI

WASDI documentation center

Deploying the application

Back on the Wasdi web-application, create a new application by pressing the New App button.

On the page that opens, fill in the details of the application, as shown in the image below.

Until the application is ready to be exposed to the public, the Make Application Public checkbox could be unchecked.
To find this checkbox, scroll down to the bottom of the page.

4.8. C# Tutorial 201

WASDI documentation center

A message will be shown to inform the user that the application (processor) will be deployed shortly.

Viewing the application

Navigate to the applications page by pressing the Apps button. Search the newly created application by filtering the
list.

Type Tutorial and click on the application’s card.

202 Chapter 4. Add your App to WASDI

WASDI documentation center

Running the application

Adjust the parameters of the application as needed and press the Run button.

Depending on the load on the server, the deployed application starts executing in second or in minutes.

4.8. C# Tutorial 203

WASDI documentation center

Also, the duration of the execution may vary. The bar and the percentage show to the user the progress.

As soon as the execution is completed, a message is shown to the user.

204 Chapter 4. Add your App to WASDI

WASDI documentation center

Minimizing the logging panel, the downloaded products become visible on the workspace.

4.8. C# Tutorial 205

WASDI documentation center

The GitHub repository

The code showed in this tutorial can also be found on the dedicated public GitHub repository: https://github.com/
wasdi-cloud/TutorialSeeSharpApp.

You can clone the project or download the code as a ZIP archive. The commits page highlights the steps of this tutorial.

The end

This is the end of the tutorial. Please try to use the WasdiLib to build interesting and powerful applications.

More information about the available operations can be found on the library reference page.

4.9 Site Map

4.9.1 Login Page

To begin a session on WASDI, you must first log on to https://www.wasdi.net/. Here you will be welcomed with our
homepage.

206 Chapter 4. Add your App to WASDI

https://github.com/wasdi-cloud/TutorialSeeSharpApp
https://github.com/wasdi-cloud/TutorialSeeSharpApp
https://github.com/wasdi-cloud/TutorialSeeSharpApp/commits/main
https://wasdi.readthedocs.io/en/latest/c%23/WasdiLib.html
https://www.wasdi.net/

WASDI documentation center

In the top right-hand corner there is a toolbar.

This toolbar contains three options:

• The flag icon can be used to set the sit language. The options are: English, Italian, French, German, Vietnamese,
Indonesian, and Romanian.

4.9. Site Map 207

WASDI documentation center

• The Info button will re-route you to https://www.wasdi.cloud/ by opening a new tab. This is WASDI’s informa-
tional site. Here you will find information about the company and platform, links to our social media pages, and
other useful resources.

• The final button is a login button. When clicked it will open a login card in the middle of the page.

Logging In

This login card provides you with four options:

1. Log into an existing account.

2. Reset a lost or forgotten password.

3. Register with WASDI and create a new account.

4. Login with WASDI’s new log in system.

To Login, simply enter your account credentials (email and password) to the original login card or WASDI’s Login 2.0
which can be selected by clicking the bottom-most button from the homepage’s login card.

If you decide to use WASDI’s Login 2.0 system, you will be redirected to this page:

208 Chapter 4. Add your App to WASDI

https://www.wasdi.cloud/

WASDI documentation center

Here you will find most of the same options as WASDI’s original login page, but with the option to sign in with COIH,
EduGAIN(GARR proxy), or EduGAIN as well.

You can use the same credentials (email and password) here as on the original login page.

4.10 How to create a User Interface (UI)

4.10.1 Introduction

Note: In this tutorial you can click on all images to see them at full resolution.

Use back command on your browser to get back to the documentation.

Here we introduce how to create a User Interface (UI) for an app that has already been deployed and made visible on
the marketplace.

The UI represents a user-friendly way to enter the parameters that otherwise should be defined in the params.json file.

Indeed, the UI maps all parameters of the params.json file to an interface where the user can enter the parameter values,
using different pieces of the interface itself that describe what parameter is expected and guide the user in the selection.

The marketplace displays all visible apps:

4.10. How to create a User Interface (UI) 209

WASDI documentation center

Selecting for example, the app named Automatic Permanent Water (S2):

After clicking on it to select this app:

210 Chapter 4. Add your App to WASDI

WASDI documentation center

And after opening the app itself, we are presented with the following:

Each of the elements listed to the left represent a tab.

In this case there are 6 tabs:

• Basic

• Mosaic

• Options

• Water thresholds

• Help

• History

• JSON.

4.10. How to create a User Interface (UI) 211

WASDI documentation center

The last 3 tabs, i.e. Help, History and JSON are always created by default by WASDI, for each application shown in
the Marketplace.

The figure above shows the controls of the tab named Basic (highlighted in green): in the figure we can see the first 2
controls of this tab, i.e. Date and Bounding Box.

A control is a portion of UI to enter a certain parameter. The parameters are the same as defined by the app developer
in the params.json file.

In our case, the first parameter is a date and its corresponding control is a calendar, while the second parameter is a
bounding box and its corresponding control is a map with options to define the bounding box itself.

After clicking on a different tab, for instance Mosaic options, the controls of this specific tab are displayed. In the figure
below we can see the 4 controls of this tab, i.e. Minimum percentage covered in the composite, Maximum number of
iterations to fill the mosaic, Option to make a mosaic of all water maps, Option to delete intermediate files. In this case,
the parameter corresponding to the slider is a range of integers (for the first 2 controls in this tab), while the parameter
corresponding to the on/off button is a Boolean variable (for the last 2 controls in this tab).

In general, the following controls are available for different types of parameters:

• Textbox to insert a text

• Calendar to insert a date

• Map to insert an area of interest

• Slider to insert an integer number

• Numeric field to insert a floating number

• Switch to insert a Boolean value

• Dropdown box to select a value from a pre-defined set of values

• Product Dropdown to let the user select an image in a workspace

For each control, the developer can set:

• The name associated parameter

• The default value

• If it is mandatory or not

212 Chapter 4. Add your App to WASDI

WASDI documentation center

For each type of control, there may be additional options like a min and max value (for a slider), or the max or min area
(for a bounding box).

To build the UI, WASDI needs a JSON that describes the number of tabs, their names as they should appear in the UI,
the order of the tabs, the controls to be included in each tab, the order of the controls in the tab and the type of control
to be attributed to each parameter.

To build the UI, the developer accesses the application edit window:

and goes to the UI section:

The UI editor is a text editor where the developer can edit the JSON describing the UI. The first time you open the UI
text editor, it will look like this:

4.10. How to create a User Interface (UI) 213

WASDI documentation center

tabs indicates that what will be added between the squared brackets is going to become one or more tabs.

To add one tab, first set the cursor between the squared brackets and then click on Tab:

After clicking on Tab, this is what will appear on the right of the screen (the different brackets might be slightly
differently indented):

214 Chapter 4. Add your App to WASDI

WASDI documentation center

This means that we are planning to create, in the UI, a single tab named, for the moment, “Tab Name”.

This tab is going to have a certain number of controls that will need to be added between the squared brackets after
“controls”:. In case you want to create a single tab, like in this example, make sure to remove the final comma.

Otherwise, if you like to make more than one tab in the UI, set the cursor after the comma and click again on Tab. Let’s
assume we want to make 2 tabs in the UI, each of them with their controls. Then we will have something like this:

In this case we have one tab named “Tab Name 1”, comprised between curly brackets, and a second tab named “Tab
Name 2”, comprised between curly brackets. A comma separates the pairs of curly brackets defining each tab. For the
second tab, I took care of removing the comma that the system automatically adds any time one click on Tab, like you
can see here below:

4.10. How to create a User Interface (UI) 215

WASDI documentation center

Now we see how to build a certain tab, i.e. the portion highlighted in the blue square in the figure below.

Here, “name” is the Tab Name. In the specific case “Tab Name 1” can be replaced by any strings, for example “Basic”,
“Advanced”, “GIS”, . . . This is the name that will be displayed in the UI. Careful: the order in which you put the tabs
here is the same order in which they will be displayed in the UI.

Once the name of a tab has been chosen, we need to add its controls, between the squared brackets. Careful: the order
in which you put the controls within the tab is the same order in which they will be displayed in the UI. The list of
available controls is as follows:

• Textbox: to display a parameter in the form of text

• Numeric field: to display a parameter in the form of a float number

• Dropdown: to display a parameter as a pre-defined set of values in a dropdown menu

• Select Area: to display a parameter in the form of a an area of interest to be selected over a map

216 Chapter 4. Add your App to WASDI

WASDI documentation center

• Number Slider: to display a parameter in the form of an integer number

• Date: to display a parameter in the form of a date to be selected from a calendar

• Bool: to display a parameter in the form of switch to insert a Boolean value

• Product Combo Box: to select from an existing workflow where the required images have been previously loaded,
the image(s) to be used

• Search EO image: a mini-search image embedded in the store

• Hidden field: for parameters that the developer does not want to be exposed to the user

All these buttons are listed on the left of the screen.

Note: Every time you click one of these buttons, WASDI will add the relative JSON “snippet” in the position of the
cursor By default, WASDI adds also the comma at the end of the snippet. Remember to delete if it is the last element
of a list to have a correct JSON.

To add controls to a given tab, first set the cursor between the square brackets after

"controls": []

Then, clicking on the elements on the left of the screen, you can add one or more controls. The following paragraph
walks you through each different control and shows how to set its properties and how it will eventually look like in the
UI.

4.10. How to create a User Interface (UI) 217

WASDI documentation center

4.10.2 Controls Shared Properties

Each control is defined by one or more properties. All controls have at least 2 properties:

• “param”: Name of the parameters. This links the parameter as displayed in the UI to the parameter defined in
the params.json file

• “type”: type of the interface block that will be added. In other words, it is one of the types listed above as
available controls.

Other than these 2, other common properties are:

• “label”: used to define the name the parameter in the UI.

• “default”: used to set the default value of this parameter.

• “required”: used to define is the parameter is mandatory or not.

• “tooltip”: used as a little help about the parameter to show to the user when he overs the mouse on the control

Here it is an example with a textbox:

{
"param": "PARAM_NAME",
"type": "textbox",
"label": "description",
"default": "",
"required": false,
"tooltip":""

},

4.10.3 Textbox

To add to “Tab Name 1” a control in the form of a text box, first set the cursor between the square brackets after
“controls” and then click on the button Textbox (to the left of the screen).

218 Chapter 4. Add your App to WASDI

WASDI documentation center

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "textbox",
"label": "description",
"default": "",
"required": false,
"tooltip":""

}

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file.

Do not modify the property “type”: “textbox”,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text
“description”. Please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “default” is used to set the default value of this parameter, in case the user does not know how to set it or
does not want to change it.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

This is an example of how a Textbox control appears in the UI:

In this case, here is how the properties of this control were set:

{
"label": "Input files prefix",
"default": "",
"required": true

}

4.10.4 Numeric field

To add to “Tab Name 1” a control in the form of a float number, first set the cursor between the square brackets after
“controls” and then click on the button Numeric field (to the left of the screen).

4.10. How to create a User Interface (UI) 219

WASDI documentation center

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "numeric",
"label": "description",
"default": "0",
"min": 0,
"max": 100,
"required": false,
"tooltip":""

}

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file.

Do not modify the property “type”: “numeric”,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text
“description”. Please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “default” is used to set the default value of this parameter, in case the user does not know how to set it or
does not want to change it. Set it to the numeric float value that you want as default.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

Again, careful with the trailing comma! If you add one more control to this specific tab, click after the final comma,
otherwise take case of removing the final comma.

This is an example of how a Numeric field control appears in the UI:

In this case, here is how the properties of this control were set:

{
"label": "Threshold to be applied to SWM (range of possible values: 1.4 - 1.6)",
"default": 1.4,
"required": true
}

4.10.5 Dropdown

To add to “Tab Name 1” a control in the form of a drop down menu with several options to choose from, first set the
cursor between the square brackets after “controls” and then click on the button Dropdown (to the left of the screen).

220 Chapter 4. Add your App to WASDI

WASDI documentation center

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "dropdown",
"label": "description",
"default": "",
"values": [],
"required": false,
"tooltip":""

}

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file.

Do not modify the property “type”: “dropdown”,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text
“description”. Please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “default” is used to set the default value of this parameter, in case the user does not know how to set it or
does not want to change it. Set it to the value that you want as default (one of those listed in “values” in the following
line).

For the property “values”, within the squared brakets [], add a list of strings, that represent the values to appear in the
dropdown menu. For example, it could be: “values”: [“ONDA”, “EODC”, “CREODIAS”]

This is an example of how a Dropdown menu control appears in the UI:

In this case, here is how the properties of this control were set:

4.10. How to create a User Interface (UI) 221

WASDI documentation center

{
"label": "Data Provider:",
"default": "ONDA",
"values": ["ONDA",

"EODC",
"SOBLOO",
"CREODIAS"]

}

4.10.6 Select Area

To add to “Tab Name 1” a control in the form of a bounding box, that the user can either draw on the displayed map or
that can be inputted as the 4 values of North, South, East, West within a pop up window in the UI, first set the cursor
between the square brackets after “controls” and then click on the button Select Area (to the left of the screen).

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "bbox",
"label": "Bounding Box",
"required": false,
"tooltip":"",
"maxArea": 0,
"maxSide": 0,
"maxRatioSide": 0

}

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file.

Do not modify the property “type”: “bbox”,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text “Bounding
Box”. If you want, please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

The control also allows to set some limits to the area selected. In case on or more of these constraints are violated, the
user will receive a specific feedback and the application cannot be launched.

The limitations can be imposed upon:

222 Chapter 4. Add your App to WASDI

WASDI documentation center

• Max area in square kilometre

• Max side in kilometre

• Maximum ratio between the sides of the selected area computed as the greater side over the smaller one. (e.g. a
bounding box of 2 kilometre by 1 kilometer will have the ratio equals to 2)

The last constraint can be used to avoid that application users, by mistake, set a bounding box very thin but also very
large: imagine for instance 1 meter per 1000 kilometers. This setup will require the load of several tiles and will slow
down the performances in general.

If maximum ratio is set to a reasonable value it can help users to avoid such errors.

This is an example of how a Select Area control appears in the UI:

In this case, here is how the properties of this control were set:

{
"param": "PARAM_NAME",
"type": "bbox",
"label": "Bounding Box",
"required": false,
"tooltip": "",
"maxArea": 10000,
"maxSide": 1500,
"maxRatioSide": 10

}

The option highlighted in the figure below is used to manually draw a rectangle:

4.10. How to create a User Interface (UI) 223

WASDI documentation center

If the area selected surpass the limits, a dedicated error message is shown and its not possible, for the user, to launch
the application.

The other option, highlighted in the figure below, allow the user to manually enter the values of the bounding box:

224 Chapter 4. Add your App to WASDI

WASDI documentation center

4.10.7 Number Slider

To add to “Tab Name 1” a control in the form of an integer number within a range of values, first set the cursor between
the square brackets after “controls” and then click on the button Number Slider (to the left of the screen).

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to

4.10. How to create a User Interface (UI) 225

WASDI documentation center

remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "slider",
"label": "description",
"default": 0,
"min": 0,
"max": 100,
"required": false,
"tooltip":""

},

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file.

Do not modify the property “type”: “slider”,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text
“description”. Please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “default” is used to set the default value of this parameter, in case the user does not know how to set it or
does not want to change it. Set it to the numeric integer value that you want as default.

The property “min” is used to set the minimum (integer) acceptable value of this parameter. Set it to the numeric
integer value that you want as minimum.

The property “max” is used to set the maximum (integer) acceptable value of this parameter. Set it to the numeric
integer value that you want as maximum.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

This is an example of how a Number Slider control appears in the UI:

In this case, here is how the properties of this control were set:

{
"label": "Days to search in the past",
"default": 10,
"min": 5,
"max": 20,
"required": true
}

226 Chapter 4. Add your App to WASDI

WASDI documentation center

4.10.8 Date

To add to “Tab Name 1” a control in the form of a date, first set the cursor between the square brackets after “controls”
and then click on the button Date (to the left of the screen).

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "date",
"label": "Date",
"required": false,
"tooltip":""

},

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file. Please change it to the name of your parameter if you want to.

Do not modify the property “type”: “date”,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text “Date”.
If you want, please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

This is an example of how a Date control appears in the UI:

4.10. How to create a User Interface (UI) 227

WASDI documentation center

In this case, here is how the properties of this control were set:

{
"label": "Date",
"required": true
}

4.10.9 Bool

To add to “Tab Name 1” a control in the form of a Boolean variable, first set the cursor between the square brackets
after “controls” and then click on the button Bool (to the left of the screen).

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "boolean",
"label": "description",
"default": false,

(continues on next page)

228 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

"required": false,
"tooltip":""

}

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file. Please change it to the name of your parameter if you want to.

Do not modify the property “type”: “boolean”,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text
“description”. Please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “default” is used to set the default value of this parameter, in case the user does not know how to set it or
does not want to change it. Set it to the value that you want as default: false or true.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

This is an example of how a Bool control appears in the UI:

In this case, here is how the properties of this control were set:

{
"label": "Option to delete intermediate files",
"default": true,
"required": true
}

4.10.10 Products Combo Box

To add to “Tab Name 1” a control in the form of Product Combo Box to allow selecting a product from an existing
workspace, first set the cursor between the square brackets after “controls” and then click on the button Product Combo
Box (to the left of the screen).

4.10. How to create a User Interface (UI) 229

WASDI documentation center

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "productscombo",
"label": "Product",
"required": false,
"tooltip":"",
"showExtension": false

},

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file. Please change it to the name of your parameter if you want to.

Do not modify the property “type”: “ productscombo “,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text “Product”.
Please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

The property “ showExtension “ is determine whether the extension of the output of the combo will be showed. It can
be either false or true.

This is an example of how a Product Combo Box control appears in the UI:

In this case, here is how the properties of this control were set:

{
"type": “productscombo”,
"label": "Reference Image (.tif)",
"required": true,
"showExtension": false
}

4.10.11 Search EO Image

To add to “Tab Name 1” a control in the form of . . . , first set the cursor between the square brackets after “controls”
and then click on the button Search EO Image (to the left of the screen).

230 Chapter 4. Add your App to WASDI

WASDI documentation center

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "searcheoimage",
"label": "Description",
"required": false,
"tooltip":""

}

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file. Please change it to the name of your parameter if you want to.

Do not modify the property “type”: “ searcheoimage “,.

The property “label” is used to define the name the parameter in the UI. In this case, it is prefilled with the text “
Description “. Please change it to the name of your parameter as you would like to see it displayed in the UI.

The property “required” is used to define is the parameter is mandatory or not. It can be either true or false (careful:
no “”).

4.10.12 Hidden Field

To add to “Tab Name 1” a control in the form of an Hidden filed, first set the cursor between the square brackets after
“controls” and then click on the button Hidden Field (to the left of the screen).

4.10. How to create a User Interface (UI) 231

WASDI documentation center

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "hidden",
"default": ""

}

The property “param” is used to identify the parameter to be used here. “PARAM_NAME” has to be exactly the same
as in the params.json file. Please change it to the name of your parameter if you want to.

Do not modify the property “type”: “ hidden “,.

The property “default” allows to set the actual value for this UI control.

4.10.13 List Box

To add to “Tab Name 1” a control in the form of an List Box, first set the cursor between the square brackets after
“controls” and then click on the button List Box (to the left of the screen).

Note: Careful: in case you have only one control in this specific tab, or this is the last control of the tab, make sure to
remove the trailing comma!

{
"param": "PARAM_NAME",
"type": "listbox",
"label": "description",
"values": [],
"required": false,

(continues on next page)

232 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

"tooltip":""
},

The property “param” is used to identify the parameter to be used here.

Do not modify the property “type”: “ listbox”,.

The property “values” is an array of strings that will be the elements of the ListBox.

4.10.14 Render As String

One additional option concerns the button “Render As Strings”. You can add this right after the very first curly brackets
(i.e. before the section with the tabs).

Note: Render As String applies to ALL The UI and not to single controls.

The idea behind this button is that, without “Render As Strings” WASDI cannot generate primitive parameters. In other
words, without “Render As Strings” a calendar will return a date, a map will return a bbox object, a slider will return
a number. But with “Render As Strings”, WASDI will automatically convert all the parameters to strings.

“Render As Strings” is required with IDL and Matlab processors. In case of a Python processor, the developer has the
choice between primitive types and strings.

Eventually, the user saves the UI that is then available in the marketplace.

{
"renderAsStrings": true,
"tabs": [

{
"name": "Input",
"controls": [

{
"param": "FILEPRE",

(continues on next page)

4.10. How to create a User Interface (UI) 233

WASDI documentation center

(continued from previous page)

"type": "productscombo",
"label": "Pre Flood Image",

"showExtension": false,
"required": true

},
{

"param": "FILEPOST",
"type": "productscombo",
"label": "Post Flood Image",

"showExtension": false,
"required": true

}
]

}
]

}

4.10.15 Example - Create an actual UI

The following is an example with 3 tabs: the first tab “Tab Name 1” has 3 controls, the second tab “Tab Name 2” has 1
control and the third tab “Tab Name 3” has 1 control. Please note the comma between “Tab Name 1” and “Tab Name
2” and between “Tab Name 2” and “Tab Name 3” (in orange) and the comma between the first and the second control
and between the second and the third control in “Tab Name 1” (in purple). All trailing commas have been removed:
please check the location of the red crosses.

234 Chapter 4. Add your App to WASDI

WASDI documentation center

Now, let’s try to reproduce together an example. We use the app developed here Python Tutorial

The file params.json contains 5 parameters

4.10. How to create a User Interface (UI) 235

WASDI documentation center

Which means that the UI will contains 5 controls.

In this case we set 2 Tabs, one named “Input” and the other one named “Provider selection”.

236 Chapter 4. Add your App to WASDI

WASDI documentation center

The first tab “Input” contains 4 controls (within the squared brakets []), the second tab “Provider selection” contains 1
control (within the squared brakets []). The order in which the tabs appear here is the same order in which they will
appear in the UI, as you can see below.

4.10. How to create a User Interface (UI) 237

WASDI documentation center

The first tab “Input” is composed of a “date” control, a “slider” control, a “bbox” control and one more “slider” control.

The “date” control refers to the parameter named DATE in the file params.json.

The first “slider” control refers to the parameter named SEARCHDAYS in the file params.json.

The “bbox” control refers to the parameter named BBOX in the file params.json.

The second “slider” control refers to the parameter named BBOX in the file params.json.

The order in which the controls appear here is the same order in which they will appear in the UI, within the “Input”
tab, as you can see below.

238 Chapter 4. Add your App to WASDI

WASDI documentation center

The second tab is composed of 1 “dropdown” control. This “dropdown” control refers to the parameter named
PROVIDER in the file params.json.

4.10. How to create a User Interface (UI) 239

WASDI documentation center

4.11 Javascript Web Tutorial

Note:
To make the most of this tutorial, prior experience with the WASDI platform is required.

For new users, it is highly recommended to follow the Wasdi Web Platform access and basic usage tutorial
before continuing.

Also, to complete the tutorial, a validated account on WASDI is required.

In this tutorial we will show you how you can start using to use the Javascript library for WASDI. In this tutorial we
will create a web page that show data gathered through the library just by using one <script> tag.

To keep the requirements of this tutorial as small and easy as possible all examples will be using browser-based DOM
manipulation: no Javascript frameworks will be used and the produced code will (should) be compatible with any
browser. (If it’s not it’s indeed time for an update :-))

If you are an Angular developer, please refer to the Angular dedicated tutorial.

240 Chapter 4. Add your App to WASDI

https://wasdi.readthedocs.io/en/latest/WasdiTutorial.html
https://wasdi.readthedocs.io/en/latest/JavascriptTutorial.html

WASDI documentation center

4.11.1 Setup & tools

For this tutorial there are no specific tools required.

In general, to write an Html document you can use:

• Microsoft Visual Studio Code (or any HTML compatible IDE)

• -OR-

• A text editor (Notepad, for instance)

The images in the following will show the Visual Studio Code option.

Create index.html file with the following content:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>Js Wasdi Tutorial</title>

</head>
<body></body>
</html>

4.11.2 Include the library

The library is served through npm so it is also automatically available through its related CDN at cnd.jsdelivr.net. The
current version for Wasdi Javascript library is 0.0.18.

Please check package page on npmjs.org for the latest updates.

Link -> Wasdi - JavaScript library

Please edit index.html and add the import of the library a the end of the head section

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>Js Wasdi Tutorial</title>

<script src="https://cdn.jsdelivr.net/npm/wasdi@0.0.18/build/wasdi-javascript.js"></
→˓script>

(continues on next page)

4.11. Javascript Web Tutorial 241

https://www.npmjs.com/package/wasdi

WASDI documentation center

(continued from previous page)

</head>
<body></body>
</html>

Now,to start using the functionalities exposed by the library, create a new file next to index.html and name it main.js.
Include the file in index.html as a new <script> tag :

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>Js Wasdi Tutorial</title>

<!-- This script loads the library -->
<script src="https://cdn.jsdelivr.net/npm/wasdi@0.0.18/build/wasdi-javascript.js"></
→˓script>
<!-- This script contains your custom code -->
<script src="main.js"></script>

</head>
<body></body>
</html>

4.11.3 Login

WASDI is a web application that allow users to download, process and obtain results from satellite imagery.

To continue with this tutorial you will need a valid account on the platform: please, proceed to register to WASDI
services and keep note of your credentials.

The first step to start interacting with WASDI services is to login by using the library facilities.

To achieve this you must add 2 files next the index.html file :

• config.json

• parameters.json

The second file will be introduced later on in the tutorial, when we will start using processors.

Add the following content to config.json, changing [YOUR_USERNAME] and [YOUR_PASSWORD] with your
WASDI credentials

{
"USER": "[YOUR_USERNAME]",
"PASSWORD": "[YOUR_PASSWORD]"

}

Note that this file name, config.json, is the default value, if no filename is passed to the method. Please check library
documentation for more details about the loadconfig() function.

WASDI libraries share the structure of the configuration files. The two fields used in the JSON above represent a sub-set
of the available configuration fields.

Check configuration chapter in Library Concepts section for more details.

242 Chapter 4. Add your App to WASDI

https://www.wasdi.net
https://wasdi.readthedocs.io/en/latest/LibsConcepts.html#configuration

WASDI documentation center

For parameters.json file, for the moment, please just add the following content:

{}

The “{}” parenthesis represents an empty JSON object, a quick starting point for the tutorial. In the following we will
edit this file adding the actual parameters.

Please open main.js and start editing the file. Wasdi library is exposed as a global singleton, a common practice for
Javascript libraries.

The variable to be used to access library methods is “wasdi” Add the following lines:

// load the configuration from config.json file
wasdi.loadConfig();
// login to Wasdi
wasdi.login();

After the successful login call, the wasdi global object will keep its state, allowing to make further requests to the
system.

4.11.4 Create Workspaces

A Workspace is a basic concept of WASDI: think of it as a folder.

One of the main objective of the platform is to connect to various satellite imagery portals and download files from
such services. The workspace is composed by a collection of images downloaded, called products.
Data retrieval doesn’t require local storage because it “happens” in the cloud. Also, a workspace holds the information
about the elaborations on such data, done by the processors. Users can create their own workspaces, and they can also
share them with other users.

In the following steps we will add some controls to HTML and some code to our main.js file to create a Workspace on
WASDI.

In this step of the tutorial we will use this library call :

wasdi.createWorkspace(wsName);

The function call can be used to create a workspace in WASDI.

For more information, the library method documentation can be found here

Wasdi uses a conventional object, the PrimitiveResult, as response for, among other, creation calls. This object has
the following structure :

{
"IntValue" : 42,
"StringValue" : "some_string",
"DoubleValue" : 3.14159265359,
"BoolValue" : true

}

In this case the response will contain a primitive result with only the StringValue setted. The value of the response
represents the workspaceID an univoque identifier of the workspace.

For more information, the library method documentation can be found here

Going back to the webpage, please edit the index.html file by adding the following lines, inside the body tags :

4.11. Javascript Web Tutorial 243

https://wasdi.readthedocs.io/en/latest/typescript/wasdi.html#createworkspace
https://wasdi.readthedocs.io/en/latest/typescript/wasdi.html#createworkspace

WASDI documentation center

<p>
Insert workspace name <input type="text" id="wsname">
<input type="button" onclick="createWorkspace()" value="Create Workspace">
</p>

Then open our javascript file main.js and define the function createWorkspace() :

// Local function to create a workspace
createWorkspace = function() {
let wsName = document.getElementById("wsname").value;
// this is the actual call to WASDI services
wasdi.createWorkspace(wsName);
}

The function defined will be invoked when the user clicks on the “Create workspace” button. Open the index.html page
on you browser and you will have a simple form like this:

When you click, the system will create a new workspace on WASDI. You can check it in the wasdi web application in
the workspaces page:

There it is !

For the following part of the tutorial, we will use this workspace as the default one. This way, for the following features,
it will not be necessary to create each time a new workspace.

To open it every time we reload the page, add this statement after the login call, at the beginning of the file main.js:

wasdi.loadConfig();
wasdi.login();
// From now on this tutorial uses JavascriptWebTutorial workspace as default
wasdi.openWorkspace("JavascriptWebTutorial");

For more information, the library method documentation can be found here

244 Chapter 4. Add your App to WASDI

https://wasdi.readthedocs.io/en/latest/typescript/wasdi.html#openworkspace

WASDI documentation center

4.11.5 List the available Processors

Another key concept of the WASDI web application is the Processor: it represents a tool to gather and elaborate
satellite imagery. Processors can be either public or private in WASDI, depending on your subscription. Any user can
upload his own code in several languages to create a new Processor. Each processor has a defined set of parameters
encoded in a specific JSON and, when we load a processor, a default template is served.

Wasdi has a dedicated section to allow users to parametrize and launch processor. In fact, the UI available in the system
just alows to edit the JSON of the parameters before the execution.

In this step of the tutorial we will list the available processors, show them on a selection list and load the parameters of
the selected one.

In the following we’re gonna use this library call :

wasdi.getDeployed();

For more information, the library method documentation can be found here

The library ask for a list of available processors (or apps). The response is an array with each element structured as
follow :

{
"imgLink": null,
"isPublic": 0,
"minuteTimeout": 180,
"paramsSample": "%7B%0A%20%20%22name%22:%20%22WASDI%22%0A%7D",
"processorDescription": "Hello WASDI world for testing purposes",
"processorId": "22c37982-34f1-4b92-9983-93afb921a8f6",
"processorName": "hellowasdiworld",
"processorVersion": "1",
"publisher": "c.nattero@fadeout.it",
"sharedWithMe": true,
"type": "ubuntu_python37_snap"

}

The fields above represents a reference to application for WASDI.

One note about paramsSample: the value, as you probably noted, is URL-encoded. In this context, in which we are
using Javascript, to view and modify the parameters we can use the 2 functions :

• decodeURI() -> To convert sample in a plain string

• encodeURI() -> To re-convert it as URL compatible string

These functions are available natively on any modern Browser/Javascript engine and will be used in the following steps.

Add the following line to the index.hml file, containing

• the button to load the deployed processor.

• a selection list that will be populated with the available ones.

• a button to load the parameters of the selected ones.

• a textarea to show the JSON of the parameters.

<p>
<input type="button" onclick="getDeployed()" value="Get processor list">
<div id="processorList"></div>

(continues on next page)

4.11. Javascript Web Tutorial 245

https://wasdi.readthedocs.io/en/latest/typescript/wasdi.html#getdeployed

WASDI documentation center

(continued from previous page)

</p>

<p>
<select id="ProcessorSelect" size="8"></select>
<input type="button" onclick="loadProcessorParameters()" value="Load processor␣

→˓parameters">
</p>

<p>
Edit parameters

<textarea rows="10" cols="100" id="parameters"> </textarea>

</p>

Then, open the main.js file and add the definition to actual load the data for the controller defined:

getDeployed = function() {
//Obtain a list of availble processors from WASDI
var deployed = wasdi.getDeployed();
let selectionList = document.getElementById("ProcessorSelect");

deployed.forEach(element => {
let option = document.createElement("option");
option.text=element.processorName;
selectionList.add(option);

});

}

loadProcessorParameters = function(){
let list = document.getElementById("ProcessorSelect");
let selectedProcessor = list.options[list.selectedIndex].text;

wasdi.getDeployed().forEach(element => {
if (element.processorName == selectedProcessor){

// Here is required the devode URI call
document.getElementById("parameters").value =decodeURI(element.paramsSample);

}
});
}

Opening again the index.html and clicking on the first button the list will be populated:

And, after selecting a processor, clicking on the second button the parameters are then showed:

246 Chapter 4. Add your App to WASDI

WASDI documentation center

4.11.6 Execute a processor

In this step we will use the data gathered on the prevoius task of the tutorial to launch an actual application on WASDI.
The first approach will be by using a simple test application, which implements a pretty common feature for program-
ming newbie. After that we will introduce the request to obtain the status of the launched processors. This data will be
showed by adding a string to the html DOM.

In this step of the tutorial this library call will be used :

wasdi.executeProcessor(processorName, parametersJSON);

For more information, the library method documentation can be found here

The methods has two parameters:

• processorName the name of the processor that we want to be launched

• parametersJSON a JSON string containing the parameters for the processor. As stating point use the template
available through getDeployed() library call.

The response to this method has the following structure:

{
"jsonEncodedResult": "",
"name": "hellowasdiworld",
"processingIdentifier": "8f09edca-2f7b-4745-aada-bff50cdc6383",
"processorId": "22c37982-34f1-4b92-9983-93afb921a8f6",
"status": "CREATED"

}

The most important parameter is the processingIdentifier: using this will allows us to follow the status of the processing
task. In this example, for the sake of clarity, the update will be triggered by the pressing of a button. In any case the
call can be integrated in more sophisticated front-end frameworks.

To retrieve the status of the process launched we will use the following library method:

wasdi.getProcessStatus(processId);

For more information, the library method documentation can be found here

The response of this method has the following parameters:

{
"fileSize": "",
"lastChangeDate": "2022-03-16 17:56:44 Z",
"operationDate": "2022-03-16 17:56:42 Z",
"operationEndDate": "2022-03-16 17:56:48 Z",
"operationStartDate": "2022-03-16 17:56:44 Z",

(continues on next page)

4.11. Javascript Web Tutorial 247

https://wasdi.readthedocs.io/en/latest/typescript/wasdi.html#executeprocessor
https://wasdi.readthedocs.io/en/latest/typescript/wasdi.html#getprocessstatus

WASDI documentation center

(continued from previous page)

"operationSubType": "",
"pid": 3860834,
"payload": "{\"name\": \"WASDI\", \"done\": true, \"the answer is\": 42}",
"processObjId": "8f09edca-2f7b-4745-aada-bff50cdc6383",
"productName": "hellowasdiworld",
"progressPerc": 100,
"status": "DONE",
"userId": "m.menapace@fadeout.it"

}

Across the several fields of the response, the ones used in this tutorial are :

• productName which identifies the processor name, “hellowasdiworld” in this example.

• status represents the possible state of the processor among: {WAITING | RUNNING | DONE | ERROR}.

• progressPerc is a number indicating the percentage of the progress fot the current processing work.

• payload is a JSON which contains information about the outcome of the elaboration.

You can check their usage in the getProcessorString function definition in the following javascript snippets.

Open index.html and add the following components inside the <body> tags:

<p>
<input type="button" onclick="executeProcessor()" value="Execute processor">

</p>

<p>
<input type="button" onclick="getStatus()" value="Get status of processor launched">

<div id="processorStatus"> </div>
</p>

First, in order to have a support variable keeping the launched process from this webpage, add this line at the top of the
main.js file

var launchedProcessorID=[];

Then add the following methods to main.js:

executeProcessor = function() {
let list = document.getElementById("ProcessorSelect");
let selectedProcessor = list.options[list.selectedIndex].text;
let parameters = document.getElementById("parameters").value;
let response = wasdi.executeProcessor(selectedProcessor,encodeURI(parameters));
console.log(response.processingIdentifier);
launchedProcessorID.push(response.processingIdentifier);

}

// Util function to render a formatteed string from the process status reponse
getProcessorString = function(status) {
let response = "";
response = response.concat("Processor name " + status.productName + " | " + "status " +␣
→˓status.status + " | % " + status.progressPerc + " | Payload " + status.payload);

(continues on next page)

248 Chapter 4. Add your App to WASDI

WASDI documentation center

(continued from previous page)

return response;
}

getStatus = function() {
document.getElementById("processorStatus").innerHTML = "";
launchedProcessorID.forEach(element => {

let status = wasdi.getProcessStatus(element);
document.getElementById("processorStatus").innerHTML = document.getElementById(

→˓"processorStatus").innerHTML.concat(
getProcessorString(status) + "
"

);
});
}

The first function executeProcessor invoke the wasdi library method to run a processor (remember, on the workspace
“JavascriptWebTutorial”).

The second function getProcessorString it’s an util method to shown the process status of the processes started from
the current page.

The last function use the wasdi library to gather the data of the launched processors and push the formatted result on a
dedicated div.

We can then test the page by launching the application hellowasdiworld: after clicking on both buttons, excecute
processor and Get status of processor launched a string with the status will showed :

If you open WASDI on wasdi.net, login with your user credentials and open the workspace, you will see that the
processor were executed:

4.11. Javascript Web Tutorial 249

WASDI documentation center

4.12 Javascript Angular Tutorial

Note:
To make the most of this tutorial, prior experience with the WASDI platform is required.

For new users, it is highly recommended to follow the Wasdi Web Platform access and basic usage tutorial
before continuing.

Also, to complete the tutorial, a validated account on WASDI is required.

In this tutorial we will introduce WASDI javascript library. To showcase the usage of the library and how it connects
to WASDI services, an easy application will be created using Angular, a popular framework from Google.

4.12.1 Setup

The requirements for this tutorial are :

• Microsoft Visual Studio Code (or any TS/JS compatible IDE)

• npm, node package manager installed on the dev machine

• Angular Cli, which will help in creating the project and adding components

Open VSCode, select open folder and select the parent directory for the project. The project folder will be created in
the following steps.

Assuming you have already installed npm globally in the system, open a terminal and install Angular Cli with the
following command :

npm i @angular/cli

The Angular Cli will add the ng command that we use to generate a new project on the current folder

250 Chapter 4. Add your App to WASDI

https://wasdi.readthedocs.io/en/latest/WasdiTutorial.html

WASDI documentation center

ng new JSTutorial

This command will take some time but, at the end, you’ll end up with a new and complete Angular application, ready
to go!

For the sake of this tutorial we will not showcase all the framework functionalities. The objective of the tutorial is to
make a brief introduction to WASDI library. For further details about Angular, please check project documentation.
Just to check that everything is up and running raise the following command :

ng serve

Open then a browser and navigate to http:localhost:4200, starter application will show up.

4.12. Javascript Angular Tutorial 251

http:localhost:4200

WASDI documentation center

This is only a filler provided by Angular team, we can remove it. Open src/app/app.component.html and delete its
content.

The application will be now empty, don’t worry that’s exactly what we want.

4.12.2 Importing the library

Now we need to add the dependency to WASDI lib: the library is hosted on npm repository so, to install it, we can use
this command on terminal:

npm i wasdi

Now that Wasdi lib is installed we need to add to angular its capabilities. To have an injectable service, we canuse the
following command:

252 Chapter 4. Add your App to WASDI

WASDI documentation center

ng generate service WasdiService

This will add to our Angular application a new service called WasdiService. We will use this service to access library
capabilities. We need a little bit of setup, now: please open wasdi-service.service.ts file. Add * Import of the wasdi
library * A method to access the wasdi instance * Set username and password to the library * Login use wasdi.login()
to obtain a session

Great ! now we have a service that can connect to WASDI and use functionalities exposed.

4.12.3 Using the library

Next step is to add an angular component that will show the list of workspaces of the current user. First create the
component with :

ng generate component WorkspaceList

this will create a workspacelist folder, with all the files and a starter implementation of the component:

Try to open again app.component.html and add the following line :

<app-workspace-list></app-workspace-list>

If you serve again the app and open localhost:4200 you will see the following:

4.12. Javascript Angular Tutorial 253

WASDI documentation center

Now the objective is to briefly show the workspace coming from WASDI server: to do this open the ts file of our
workspacelist component and add the following

• Inject our WasdiService in the constructor of the component

• Create the variable wsList which will hold the workspace list

• Initialize the variable by using the lib, as follows

Open now the html file and add the following code, which loop over element in wsList to render them as paragraph :

Open now the webpage and you will se alist of the workspaces coming from your WASDI account!

254 Chapter 4. Add your App to WASDI

WASDI documentation center

The tutorial ends here. We have briefly showed how can a JS/TS application can interact with WASDI. Please refer to
the official documentation of the library for a complete cover of alla the functionalities.

4.12. Javascript Angular Tutorial 255

WASDI documentation center

256 Chapter 4. Add your App to WASDI

CHAPTER

FIVE

REFERENCE CENTER

WASDI allows users and developer to interact though libraries and APIs. Find the reference of your language library
on the left menu.

5.1 C# WasdiLib

public class Wasdi

5.1.1 Fields

m_sUser

private string m_sUser

5.1.2 Constructors

Wasdi

public Wasdi()
Self constructor. If there is a config file initializes the class members

5.1.3 Methods

Init

public bool Init(string sConfigFilePath)
Init the WASDI Library starting from a configuration file. If the path is not provided, the application will attempt
to use the conventional appsettings.json file.

Parameters
• sConfigFilePath – the name of the file to be added to the open workspace

Returns
True if the system is initialized, False if there is any error

257

WASDI documentation center

InternalInit

public bool InternalInit(string sConfigFilePath)
Call this after base parameters settings to init the system. Needed at least: Base Path, User, Password or SessionId.

Returns
True if the system is initialized, False if there is any error

AddFileToWASDI

public string AddFileToWASDI(string sFileName)
Adds a generated file to current open workspace in a synchronous way.

Parameters
• sFileName – the name of the file to be added to the open workspace

Returns
the process Id or empty string in case of any issues

GetDefaultProvider

public string GetDefaultProvider()
Explicit accessor for the defaultProvider property.

Returns
the defaultProvider

SetDefaultProvider

public void SetDefaultProvider(string sProvider)
Explicit mutator for the defaultProvider property.

Parameters
• sProvider – the provider to be used by default

GetUser

public string GetUser()
Explicit accessor for the user property.

Returns
the user

258 Chapter 5. Reference center

WASDI documentation center

SetUser

public void SetUser(string sUser)
Explicit mutator for the user property.

Parameters
• sUser – the user

GetPassword

public string GetPassword()
Explicit accessor for the password property.

Returns
the password

SetPassword

public void SetPassword(string sPassword)
Explicit mutator for the password property.

Parameters
• sPassword – the password

GetActiveWorkspace

public string GetActiveWorkspace()
Explicit accessor for the activeWorkspace property.

Returns
the activeWorkspace

SetActiveWorkspace

public void SetActiveWorkspace(string sNewActiveWorkspaceId)
Explicit mutator for the activeWorkspace property. If the new active workspace is not null, sets also the workspace
owner.

Parameters
• sNewActiveWorkspaceId – the new Id of the activeWorkspace

5.1. C# WasdiLib 259

WASDI documentation center

GetSessionId

public string GetSessionId()
Explicit accessor for the sessionId property.

Returns
the sessionId

SetSessionId

public void SetSessionId(string sSessionId)
Explicit mutator for the sessionId property. Sets the sessionId only if the input is not null.

Parameters
• sSessionId – the sessionId

GetBaseUrl

public string GetBaseUrl()
Explicit accessor for the baseUrl property.

Returns
the baseUrl

SetBaseUrl

public void SetBaseUrl(string sBaseUrl)
Explicit mutator for the baseUrl property. Sets the baseUrl only if the input is not null and if it represents a valid
URI.

Parameters
• sBaseUrl – the new baseUrl

GetIsOnServer

public bool GetIsOnServer()
Explicit accessor for the isOnServer property.

Returns
True if the application is deployed on server, False if it is running on local development machine

SetIsOnServer

public void SetIsOnServer(bool bIsOnServer)
Explicit mutator for the isOnServer property.

Parameters
• bIsOnServer – Indicates whether the application is deployed on server or running on local

development machine

260 Chapter 5. Reference center

WASDI documentation center

GetDownloadActive

public bool GetDownloadActive()
Explicit accessor for the downloadActive property.

Returns
the value of the downloadActive flag

SetDownloadActive

public void SetDownloadActive(bool bDownloadActive)
Explicit mutator for the downloadActive property.

Parameters
• bDownloadActive – the desired value of the downloadActive flag

GetBasePath

public string GetBasePath()
Explicit accessor for the basePath property.

Returns
the basePath

SetBasePath

public void SetBasePath(string sBasePath)
Explicit mutator for the basePath property. Sets the basePath only if the input is not null and if it represents a
valid path and the user has the permissions to read and write.

Parameters
• sBasePath – the new basePath

GetMyProcId

public string GetMyProcId()
Explicit accessor for the myProcId property.

Returns
the myProcId

SetMyProcId

public void SetMyProcId(string sMyProcId)
Explicit mutator for the myProcId property. Set the myProcessId only if the input is not null or empty.

Parameters
• sMyProcId – the value of myProcId

5.1. C# WasdiLib 261

WASDI documentation center

GetVerbose

public bool GetVerbose()
Explicit accessor for the verbose property.

Returns
the value of the verbose flag

SetVerbose

public void SetVerbose(bool bVerbose)
Explicit mutator for the verbose property. If the verbose flag is set to True, the level of logging is INFORMA-
TION. If the verbose flag is set to False, the level of logging is ERROR.

Parameters
• bVerbose – the desired value of the verbose flag

GetParams

public Dictionary<string, string> GetParams()
Get the parameters (except for the user, sessionId and workspaceid).

Returns
the Params dictionary

GetParamsAsJsonString

public string GetParamsAsJsonString()
Get the parameters in Json format.

Returns
the parameters as a Json string

AddParam

public void AddParam(string sKey, string sParam)

Add a parameter to the parameters dictionary.

Parameters
• sKey – the new key

• sParam – the new value

262 Chapter 5. Reference center

WASDI documentation center

GetParam

public string GetParam(string sKey)
Get a specific parameter from the parameters dictionary. If the key is not contained by the dictionary, an empty
string is returned.

Parameters
• sKey – the key

Returns
the value corresponding to the key or an empty string

GetParametersFilePath

public string GetParametersFilePath()
Explicit accessor for the parametersFilePath property.

Returns
the parameters file path

SetParametersFilePath

public void SetParametersFilePath(string sParametersFilePath)
Sets the parametersFilePath only if the input is not null and if it represents a valid path.

Parameters
• sParametersFilePath – the parameters file path

CreateSession

public string CreateSession(string sUser, string sPassword)
Create a new session and return its Id.

Parameters
• sUser – the username

• sPassword – the password

Returns
the newly created sessionId

CheckSession

public string CheckSession(string sSessionId, string sUser)
Check the session.

Parameters
• sSessionId – the actual session Id

• sUser – the username of the expected user

Returns
True if the actual user is the same as the expected user, false otherwise

5.1. C# WasdiLib 263

WASDI documentation center

GetWorkspaceBaseUrl

public string GetWorkspaceBaseUrl()
Explicit accessor for the workspaceBaseUrl property.

Returns
the workspace’s baseUrl

SetWorkspaceBaseUrl

public void SetWorkspaceBaseUrl(string sWorkspaceBaseUrl)
Sets the workspace’s baseUrl only if the input is not null and if it represents a valid URI.

Parameters
• sWorkspaceBaseUrl – the new baseUrl of the workspace

Hello

public string Hello()
Call the hello endpoint and return thre response.

Returns
the response of the server or null in case of any error

GetWorkspaces

public List<Workspace> GetWorkspaces()
Get the list of workspaces of the logged user.

Returns
the list of workspaces or null in case of any error

GetWorkspacesNames

public List<string> GetWorkspaces()
Get the list of workspaces’ names of the logged user.

Returns
the list of workspaces’ names or an empty list in case of any error

GetWorkspaceIdByName

public string GetWorkspaceIdByName(string sWorkspaceName)
Get the Id of a workspace identified by name.

Parameters
• sWorkspaceName – the name of the workspace

Returns
the Id of the workspace or an empty string in case of an error or if there is no workspace with the
name indicated

264 Chapter 5. Reference center

WASDI documentation center

GetWorkspaceNameById

public string GetWorkspaceNameById(string sWorkspacesId)
Get the name of a workspace identified by Id.

Parameters
• sWorkspacesId – the Id of the workspace

Returns
the name of the workspace or an empty string in case of an error or if there is no workspace with
the Id indicated

GetWorkspaceOwnerByName

public string GetWorkspaceOwnerByName(string sWorkspacesId)
Get the userId of the owner of a workspace identified by name.

Parameters
• sWorkspacesId – the name of the workspace

Returns
the user Id of the workspace’s owner or an empty string in case of an error or if there is no
workspace with the name indicated

GetWorkspaceOwnerByWSId

public string GetWorkspaceOwnerByWSId(string sWorkspaceId)
Get the userId of the owner of a workspace identified by Id.

Parameters
• sWorkspaceId – the Id of the workspace

Returns
the user Id of the workspace’s owner or an empty string in case of an error or if there is no
workspace with the Id indicated

GetWorkspaceUrlByWsId

public string GetWorkspaceUrlByWsId(string sWorkspaceId)
Get the workspace’s URL of a workspace identified by Id.

Parameters
• sWorkspaceId – the Id of the workspace

Returns
the workspace’s URL or an empty string in case of an error or if there is no workspace with the
Id indicated

5.1. C# WasdiLib 265

WASDI documentation center

OpenWorkspaceById

public string OpenWorkspaceById(string sWorkspaceId)
Open a workspace given its Id.

Parameters
• sWorkspaceId – the Id of the workspace

Returns
the workspace Id if opened successfully, empty string otherwise

OpenWorkspace

public string OpenWorkspace(string sWorkspaceName)
Open a workspace.

Parameters
• sWorkspaceName – Workspace name to open

Returns
the workspace Id if opened successfully, empty string otherwise

GetProductsByWorkspace

public List<string> GetProductsByWorkspace(string sWorkspaceName)
Get a List of the products in a workspace.

Parameters
• sWorkspaceName – the name of the workspace

Returns
List of Strings representing the product names

GetProductsByWorkspaceId

public List<string> GetProductsByWorkspaceId(string sWorkspaceId)
Get a List of the products in a Workspace

Parameters
• sWorkspaceId – the Id of the workspace

Returns
List of Strings representing the product names

266 Chapter 5. Reference center

WASDI documentation center

GetProductsByActiveWorkspace

public List<string> GetProductsByWorkspaceId()
Get a List of the products in the active workspace

Returns
List of Strings representing the product names

GetProductName

public string GetProductName(Dictionary<string, object> oProduct)
Get the name of the product provided. For the names starting with S1 or S2, add the .zip extension in case it is
missing.

Parameters
• oProduct – the product

Returns
the name of the product or null in case of any error

ImportAndPreprocessWithLinks

public void ImportAndPreprocessWithLinks(List<string> asProductsLink, List<string> asProductsNames,
string sWorkflow, string sPreProcSuffix)

Import and pre-process with links.

Parameters
• asProductsLink – the list of product links

• asProductsNames – the list of product names

• sWorkflow – the workflow

• sPreProcSuffix – the pre-process suffix

ImportAndPreprocessWithLinks

public void ImportAndPreprocessWithLinks(List<string> asProductsLink, List<string> asProductsNames,
string sWorkflow, string sPreProcSuffix, string sProvider)

Import and pre-process with links.

Parameters
• asProductsLink – the list of product links

• asProductsNames – the list of product names

• sWorkflow – the workflow

• sPreProcSuffix – the pre-process suffix

• sProvider – the provider

5.1. C# WasdiLib 267

WASDI documentation center

ImportAndPreprocess

public void ImportAndPreprocess(List<Dictionary<string, object>> aoProductsToImport, string sWorkflow,
string sPreProcSuffix)

Import and pre-process.

Parameters
• aoProductsToImport – the list of products

• sWorkflow – the workflow

• sPreProcSuffix – the pre-process suffix

ImportAndPreprocess

public void ImportAndPreprocess(List<Dictionary<string, object>> aoProductsToImport, string sWorkflow,
string sPreProcSuffix, string sProvider)

Import and pre-process.

Parameters
• aoProductsToImport – the list of products

• sWorkflow – the workflow

• sPreProcSuffix – the pre-process suffix

• sProvider – the provider

AsynchPreprocessProductsOnceDownloaded

public List<string> AsynchPreprocessProductsOnceDownloaded(List<Dictionary<string, object>>
aoProductsToImport, string sWorkflow, string
sPreProcSuffix, List<string> asDownloadIds)

Asynchronously pre-process products once ther are downloaded.

Parameters
• aoProductsToImport – the list of products

• sWorkflow – the workflow

• sPreProcSuffix – the pre-process suffix

• asDownloadIds – the list of downloads Ids

Returns
the list of workflow ids

268 Chapter 5. Reference center

WASDI documentation center

AsynchPreprocessProductsOnceDownloadedWithNames

public List<string> AsynchPreprocessProductsOnceDownloadedWithNames(List<string> asProductsNames,
string sWorkflow, string
sPreProcSuffix, List<string>
asDownloadIds)

Asynchronously pre-process products once ther are downloaded and names are provided.

Parameters
• asProductsNames – the list of product names

• sWorkflow – the workflow

• sPreProcSuffix – the pre-process suffix

• asDownloadIds – the list of downloads Ids

Returns
the list of workflow ids

GetPath

public string GetPath(string sProductName)
Get the local path of a file.

Parameters
• sProductName – the name of the file

Returns
the full local path

InternalGetFullProductPath

public string InternalGetFullProductPath(string sProductName)
Get the full local path of a product given the product name. Use the output of this API to open the file.

Parameters
• sProductName – the product name

Returns
the product’s full path as a String ready to open file

GetSavePath

public string GetSavePath()
Get the local Save Path to use to save custom generated files.

Returns
the local path to use to save a custom generated file

5.1. C# WasdiLib 269

WASDI documentation center

GetWorkflows

public List<Workflow> GetWorkflows()
Get the list of workflows for the user.

Returns
the list of the workflows or null in case of any error

AsynchExecuteWorkflow

public string AsynchExecuteWorkflow(List<string> asInputFileNames, List<string> asOutputFileNames, string
sWorkflowName)

Executes a WASDI SNAP Workflow in a asynch mode.

Parameters
• asInputFileNames – the list of input file names

• asOutputFileNames – the list of output file names

• sWorkflowName – the workflow’s name

Returns
the Id of the workflow process or empty string in case of any issue

ExecuteWorkflow

public string AsynchExecuteWorkflow(List<string> asInputFileNames, List<string> asOutputFileNames, string
sWorkflowName)

Executes a WASDI SNAP Workflow waiting for the process to finish.

Parameters
• asInputFileNames – the list of input file names

• asOutputFileNames – the list of output file names

• sWorkflowName – the workflow’s name

Returns
output status of the Workflow Process

GetProcessStatus

public string GetProcessStatus(string sProcessId)
Get WASDI Process Status.

Parameters
• sProcessId – the process’s Id

Returns
process Status as a String: CREATED, RUNNING, STOPPED, DONE, ERROR, WAITING,
READY

270 Chapter 5. Reference center

WASDI documentation center

GetProcessesStatus

public string GetProcessesStatus(List<string> asIds)
Get the status of a List of WASDI processes.

Parameters
• asIds – the list of processes Ids

Returns
Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ERROR, WAITING,
READY

GetProcessesStatusAsList

public string GetProcessesStatusAsList(List<string> asIds)
Get the status of a List of WASDI processes.

Parameters
• asIds – the list of processes Ids

Returns
Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ERROR, WAITING,
READY

UpdateStatus

public string UpdateStatus(string sStatus)
Update the status of the current process.

Parameters
• sStatus – the status to set

Returns
updated status as a String or empty string in case of any issue

UpdateStatus

public string UpdateStatus(string sStatus, int iPerc)
Update the status of the current process.

Parameters
• sStatus – the status to set

• iPerc – the progress in %

Returns
updated status as a String or empty string in case of any issue

5.1. C# WasdiLib 271

WASDI documentation center

UpdateProcessStatus

public string UpdateProcessStatus(string sProcessId, string sStatus, int iPerc)
Update the status of a process.

Parameters
• sProcessId – the process Id

• sStatus – the status to set

• iPerc – the progress in %

Returns
updated status as a String or empty string in case of any issue

UpdateProgressPerc

public string UpdateProgressPerc(int iPerc)
Update the status of a process.

Parameters
• iPerc – the progress in %

Returns
updated status as a String or empty string in case of any issue

WaitProcess

public string WaitProcess(string sProcessId)
Wait for a process to finish.

Parameters
• sProcessId – the process Id

Returns
the process status

WaitProcesses

public List<string> WaitProcesses(List<string> asIds)
Wait for a collection of processes to finish.

Parameters
• asIds – the list of processes Ids

Returns
the list of process statuses

272 Chapter 5. Reference center

WASDI documentation center

SetPayload

public void SetPayload(string sData)
Set the payload of the current process (only if the input is not null or empty).

Parameters
• sData – the payload as a String. JSON format recommended

SetProcessPayload

public string SetProcessPayload(string sProcessId, string sData)
Set the payload of the current process (only if the input is not null or empty).

Parameters
• sProcessId – the process Id

• sData – the payload as a String. JSON format recommended

Returns
the status of the process or empty string in case of any issues

RefreshParameters

public void RefreshParameters()
Refresh Parameters reading again the file.

AddFileToWASDI

public string AddFileToWASDI(string sFileName, string sStyle)
Adds a generated file to current open workspace in synchronous way.

Parameters
• sFileName – the name of the file to be added to the open workspace

• sStyle – name of a valid WMS style

Returns
the process Id or empty string in case of any issues

AsynchAddFileToWASDI

public string AsynchAddFileToWASDI(string sFileName, string sStyle)
Adds a generated file to current open workspace in asynchronous way.

Parameters
• sFileName – the name of the file to be added to the open workspace

• sStyle – name of a valid WMS style

Returns
the process Id or empty string in case of any issues

5.1. C# WasdiLib 273

WASDI documentation center

AddFileToWASDI

public string AddFileToWASDI(string sFileName)
Adds a generated file to current open workspace in synchronous way.

Parameters
• sFileName – the name of the file to be added to the open workspace

Returns
the process Id or empty string in case of any issues

AsynchAddFileToWASDI

public string AsynchAddFileToWASDI(string sFileName)
Adds a generated file to current open workspace in asynchronous way.

Parameters
• sFileName – the name of the file to be added to the open workspace

Returns
the process Id or empty string in case of any issues

Mosaic

public string Mosaic(List<string> asInputFiles, string sOutputFile)
Mosaic with minimum parameters: input and output files.

Parameters
• asInputFiles – the list of input files to mosaic

• sOutputFile – the name of the mosaic output file

Returns
the end status of the process

Mosaic

public string Mosaic(List<string> asInputFiles, string sOutputFile, string sNoDataValue, string sInputIgnoreValue)
Mosaic with minimum parameters: input and output files.

Parameters
• asInputFiles – the list of input files to mosaic

• sOutputFile – the name of the mosaic output file

• sNoDataValue – the value to use in output as no data

• sInputIgnoreValue – the value to use as input no data

Returns
the end status of the process

274 Chapter 5. Reference center

WASDI documentation center

Mosaic

public string Mosaic(List<string> asInputFiles, string sOutputFile, string sNoDataValue, string sInputIgnoreValue,
double dPixelSizeX, double dPixelSizeY)

Mosaic with minimum parameters: input and output files.

Parameters
• asInputFiles – the list of input files to mosaic

• sOutputFile – the name of the mosaic output file

• sNoDataValue – the value to use in output as no data

• sInputIgnoreValue – the value to use as input no data

• dPixelSizeX – the X Pixel Size

• dPixelSizeY – the Y Pixel Size

Returns
the end status of the process

AsynchMosaic

public string Mosaic(List<string> asInputFiles, string sOutputFile)
Asynch Mosaic with minimum parameters: input and output files.

Parameters
• asInputFiles – the list of input files to mosaic

• sOutputFile – the name of the mosaic output file

Returns
the end status of the process

AsynchMosaic

public string Mosaic(List<string> asInputFiles, string sOutputFile, string sNoDataValue, string sInputIgnoreValue)
Asynch Mosaic with minimum parameters: input and output files.

Parameters
• asInputFiles – the list of input files to mosaic

• sOutputFile – the name of the mosaic output file

• sNoDataValue – the value to use in output as no data

• sInputIgnoreValue – the value to use as input no data

Returns
the end status of the process

5.1. C# WasdiLib 275

WASDI documentation center

AsynchMosaic

public string Mosaic(List<string> asInputFiles, string sOutputFile, string sNoDataValue, string sInputIgnoreValue,
double dPixelSizeX, double dPixelSizeY)

Asynch Mosaic with minimum parameters: input and output files.

Parameters
• asInputFiles – the list of input files to mosaic

• sOutputFile – the name of the mosaic output file

• sNoDataValue – the value to use in output as no data

• sInputIgnoreValue – the value to use as input no data

• dPixelSizeX – the X Pixel Size

• dPixelSizeY – the Y Pixel Size

Returns
the end status of the process

SearchEOImages

public List<QueryResult> SearchEOImages(string sPlatform, string sDateFrom, string sDateTo, Double dULLat,
Double dULLon, Double dLRLat, Double dLRLon, string
sProductType, int iOrbitNumber, string sSensorOperationalMode,
string sCloudCoverage)

Search EO-Images

Parameters
• sPlatform – the Satellite Platform. Accepts “S1”,”S2”,”S3”,”S5P”,”ENVI”,”L8”,”VIIRS”,”ERA5”

• sDateFrom – the Starting date in format “YYYY-MM-DD”

• sDateTo – the End date in format “YYYY-MM-DD”

• dULLat – Upper Left Lat Coordinate. Can be null.

• dULLon – Upper Left Lon Coordinate. Can be null.

• dLRLat – Lower Right Lat Coordinate. Can be null.

• dLRLon – Lower Right Lon Coordinate. Can be null.

• sProductType – the Product Type. If Platform = “S1” -> Accepts “SLC”,”GRD”, “OCN”.
If Platform = “S2” -> Accepts “S2MSI1C”,”S2MSI2Ap”,”S2MSI2A”. Can be null.

• iOrbitNumber – the Sentinel Orbit Number. Can be null.

• sSensorOperationalMode – the Sensor Operational Mode. ONLY for S1. Accepts ->
“SM”, “IW”, “EW”, “WV”. Can be null. Ignored for Platform “S2”

• sCloudCoverage – the Cloud Coverage. Sample syntax: [0 TO 9.4]

Returns
the list of the available products

276 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html

WASDI documentation center

GetFoundProductName

public string GetFoundProductName(QueryResult oProduct)
Get the name of a Product found by searchEOImage.

Parameters
• oProduct – the Product as returned by searchEOImage

Returns
the name of the product

GetFoundProductName

public string GetFoundProductName(Dictionary<string, object> oProduct)
Get the name of a Product found by searchEOImage.

Parameters
• oProduct – the JSON Dictionary Product as returned by searchEOImage

Returns
the name of the product

GetFoundProductLink

public string GetFoundProductLink(QueryResult oProduct)
Get the direct download link of a Product found by searchEOImage.

Parameters
• oProduct – the Product as returned by searchEOImage

Returns
the link of the product

GetFoundProductLink

public string GetFoundProductLink(Dictionary<string, object> oProduct)
Get the direct download link of a Product found by searchEOImage.

Parameters
• oProduct – the JSON Dictionary Product as returned by searchEOImage

Returns
the link of the product

5.1. C# WasdiLib 277

WASDI documentation center

GetFoundProductFootprint

public string GetFoundProductFootprint(QueryResult oProduct)
Get the footprint of a Product found by searchEOImage.

Parameters
• oProduct – the Product as returned by searchEOImage

Returns
the footprint of the product

GetFoundProductFootprint

public string GetFoundProductFootprint(Dictionary<string, object> oProduct)
Get the footprint of a Product found by searchEOImage.

Parameters
• oProduct – the JSON Dictionary Product as returned by searchEOImage

Returns
the footprint of the product

AsynchImportProduct

public string AsynchImportProduct(Dictionary<string, object> oProduct)
Asynchronously import a product.

Parameters
• oProduct – the product to be imported

Returns
the status of the Import process

AsynchImportProduct

public string AsynchImportProduct(Dictionary<string, object> oProduct, string sProvider)
Asynchronously import a product.

Parameters
• oProduct – the product to be imported

• sProvider – the provider of choice. If null, the default provider will be used

Returns
the status of the Import process

278 Chapter 5. Reference center

WASDI documentation center

ImportProduct

public string ImportProduct(Dictionary<string, object> oProduct)
Import a Product from a Provider in WASDI.

Parameters
• oProduct – the product to be imported

Returns
the status of the Import process

ImportProduct

public string ImportProduct(QueryResult oProduct)
Import a Product from a Provider in WASDI.

Parameters
• oProduct – the product to be imported

Returns
the status of the Import process

ImportProduct

public string ImportProduct(string sFileUrl, string sFileName)
Import a Product from a Provider in WASDI.

Parameters
• sFileUrl – the Direct link of the product

• sFileName – the name of the file

Returns
the status of the Import process

ImportProduct

public string ImportProduct(string sFileUrl, string sFileName, string sBoundingBox)
Import a Product from a Provider in WASDI.

Parameters
• sFileUrl – the Direct link of the product

• sFileName – the name of the file

• sBoundingBox – the bounding box

Returns
the status of the Import process

5.1. C# WasdiLib 279

WASDI documentation center

ImportProduct

public string ImportProduct(string sFileUrl, string sFileName, string sBoundingBox, string sProvider)
Import a Product from a Provider in WASDI.

Parameters
• sFileUrl – the Direct link of the product

• sFileName – the name of the file

• sBoundingBox – the bounding box

• sProvider – the provider

Returns
the status of the Import process

AsynchImportProduct

public string AsynchImportProduct(string sFileUrl, string sFileName)
Import a Product from a Provider in WASDI asynchronously.

Parameters
• sFileUrl – the Direct link of the product

• sFileName – the name of the file

Returns
the status of the Import process

AsynchImportProduct

public string AsynchImportProduct(string sFileUrl, string sFileName, string sBoundingBox)
Import a Product from a Provider in WASDI asynchronously.

Parameters
• sFileUrl – the Direct link of the product

• sFileName – the name of the file

• sBoundingBox – the bounding box

Returns
the status of the Import process

AsynchImportProduct

public string AsynchImportProduct(string sFileUrl, string sFileName, string sBoundingBox, string sProvider)
Import a Product from a Provider in WASDI asynchronously.

Parameters
• sFileUrl – the Direct link of the product

• sFileName – the name of the file

• sBoundingBox – the bounding box

280 Chapter 5. Reference center

WASDI documentation center

• sProvider – the provider

Returns
the status of the Import process

AsynchImportProductListWithMaps

public List<string> AsynchImportProductListWithMaps(List<Dictionary<string, object>>
aoProductsToImport)

Imports a list of product asynchronously.

Parameters
• aoProductsToImport – the list of products to import

Returns
a list of String containing the WASDI process ids of all the imports

AsynchImportProductList

public List<string> AsynchImportProductList(List<string> asProductsToImport, List<string> asNames)
Imports a list of product asynchronously.

Parameters
• asProductsToImport – the list of products to import

• asNames – the list of names

Returns
a list of String containing the WASDI process ids of all the imports

ImportProductListWithMaps

public List<string> ImportProductListWithMaps(List<Dictionary<string, object>> aoProductsToImport)
Imports a list of product.

Parameters
• aoProductsToImport – the list of products to import

Returns
a list of String containing the WASDI process ids of all the imports

ImportProductList

public List<string> ImportProductList(List<string> asProductsToImport, List<string> asNames)
Imports a list of product.

Parameters
• asProductsToImport – the list of products to import

• asNames – the list of names

Returns
a list of String containing the WASDI process ids of all the imports

5.1. C# WasdiLib 281

WASDI documentation center

Subset

public string Subset(string sInputFile, string sOutputFile, double dLatN , double dLonW , double dLatS, double
dLonE)

Make a Subset (tile) of an input image in a specified Lat Lon Rectangle.

Parameters
• sInputFile – the name of the input file

• sOutputFile – the name of the output file

• dLatN – the Lat North Coordinate

• dLonW – the Lon West Coordinate

• dLatS – the Lat South Coordinate

• dLonE – the Lon East Coordinate

Returns
the status of the operation

MultiSubset

public string MultiSubset(string sInputFile, List<string> asOutputFiles, List<Double> adLatN , List<Double>
adLonW , List<Double> adLatS, List<Double> adLonE)

Creates a Many Subsets from an image. MAX 10 TILES PER CALL. Assumes big tiff format by default.

Parameters
• sInputFile – the name of the input file

• asOutputFiles – the name of the output file

• adLatN – the list of Lat North Coordinates

• adLonW – the list of Lon West Coordinates

• adLatS – the list of Lat South Coordinates

• adLonE – the list of Lon East Coordinates

Returns
the status of the operation

MultiSubset

public string MultiSubset(string sInputFile, List<string> asOutputFiles, List<Double> adLatN , List<Double>
adLonW , List<Double> adLatS, List<Double> adLonE, bool bBigTiff)

Creates a Many Subsets from an image. MAX 10 TILES PER CALL.

Parameters
• sInputFile – the name of the input file

• asOutputFiles – the name of the output file

• adLatN – the list of Lat North Coordinates

• adLonW – the list of Lon West Coordinates

• adLatS – the list of Lat South Coordinates

282 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html

WASDI documentation center

• adLonE – the list of Lon East Coordinates

• bBigTiff – flag indicating whether to use the bigtiff format, for files bigger than 4 GB

Returns
the status of the operation

AsynchMultiSubset

public string MultiSubset(string sInputFile, List<string> asOutputFiles, List<Double> adLatN , List<Double>
adLonW , List<Double> adLatS, List<Double> adLonE)

Asynchronous multisubset: creates a Many Subsets from an image. MAX 10 TILES PER CALL. Assumes big
tiff format by default.

Parameters
• sInputFile – the name of the input file

• asOutputFiles – the name of the output file

• adLatN – the list of Lat North Coordinates

• adLonW – the list of Lon West Coordinates

• adLatS – the list of Lat South Coordinates

• adLonE – the list of Lon East Coordinates

Returns
the status of the operation

AsynchMultiSubset

public string MultiSubset(string sInputFile, List<string> asOutputFiles, List<Double> adLatN , List<Double>
adLonW , List<Double> adLatS, List<Double> adLonE, bool bBigTiff)

Asynchronous multisubset: creates a Many Subsets from an image. MAX 10 TILES PER CALL.

Parameters
• sInputFile – the name of the input file

• asOutputFiles – the name of the output file

• adLatN – the list of Lat North Coordinates

• adLonW – the list of Lon West Coordinates

• adLatS – the list of Lat South Coordinates

• adLonE – the list of Lon East Coordinates

• bBigTiff – flag indicating whether to use the bigtiff format, for files bigger than 4 GB

Returns
the status of the operation

5.1. C# WasdiLib 283

http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html

WASDI documentation center

ExecuteProcessor

public string ExecuteProcessor(string sProcessorName, Dictionary<string, object> aoParams)
Executes a synchronous process, i.e., runs the process and waits for it to complete.

Parameters
• sProcessorName – the name of the processor

• aoParams – the dictionary of params

Returns
the WASDI processor Id

AsynchExecuteProcessor

public string AsynchExecuteProcessor(string sProcessorName, Dictionary<string, object> aoParams)
Execute a WASDI processor in Asynch way.

Parameters
• sProcessorName – the name of the processor

• aoParams – the dictionary of params

Returns
the WASDI processor Id

ExecuteProcessor

public string ExecuteProcessor(string sProcessorName, string sEncodedParams)
Executes a synchronous process, i.e., runs the process and waits for it to complete.

Parameters
• sProcessorName – the name of the processor

• sEncodedParams – a JSON formatted string of parameters for the processor

Returns
the WASDI processor Id

AsynchExecuteProcessor

public string AsynchExecuteProcessor(string sProcessorName, string sEncodedParams)
Execute a WASDI processor in Asynch way.

Parameters
• sProcessorName – the name of the processor

• sEncodedParams – a JSON formatted string of parameters for the processor

Returns
the WASDI processor Id

284 Chapter 5. Reference center

WASDI documentation center

DeleteProduct

public string DeleteProduct(string sProduct)
Delete a Product in the active Workspace.

Parameters
• sProduct – the product’s name

Returns
the status of the operation

WasdiLog

public void WasdiLog(string sLogRow)
Write one row of Log.

Parameters
• sLogRow – the text to log

GetProcessorPath

public string GetProcessorPath()
Get the processor Path. The value should resemble the following path: C:/dev/WasdiLib.Client/bin/Debug/net6.0

Returns
the processor path

CreateWorkspace

public string CreateWorkspace(string sWorkspaceName)
Create a workspace using the provided name. Once the workspace is created, it is also opened.

Parameters
• sWorkspaceName – the name of the workspace

Returns
the Id of the newly created workspace or empty string in case of any issues

CreateWorkspace

public string CreateWorkspace(string sWorkspaceName, string nodeCode)
Create a workspace using the provided name on the indicated node. Once the workspace is created, it is also
opened.

Parameters
• sWorkspaceName – the name of the workspace

• nodeCode – the node on which to create the workspace

Returns
the Id of the newly created workspace or empty string in case of any issues

5.1. C# WasdiLib 285

WASDI documentation center

DeleteWorkspace

public string DeleteWorkspace(string workspaceId)
Deletes the workspace given its Id.

Parameters
• workspaceId – the Id of the workspace

Returns
the Id of the workspace as a String if succesful, empty string otherwise

GetProcessWorkspacesByWorkspaceId

public List<ProcessWorkspace> GetProcessWorkspacesByWorkspaceId(string workspaceId)
Get the process workspaces by workspace id

Parameters
• workspaceId – the Id of the workspace

Returns
the list of process workspaces or an empty list in case of any issues

GetProcessesByWorkspaceAsListOfJson

public List<string> GetProcessesByWorkspaceAsListOfJson(int iStartIndex, Int32 iEndIndex, string sStatus,
string sOperationType, string sNamePattern)

Get a paginated list of processes in the active workspace, each element of which is a JSON string.

Parameters
• iStartIndex – the start index of the process (0 by default is the last one)

• iEndIndex – the end index of the process (optional)

• sStatus – the status filter, null by default. Can be CREATED, RUNNING, STOPPED,
DONE, ERROR, WAITING, READY

• sOperationType – the Operation Type Filter, null by default. Can be RUNPROCESSOR,
RUNIDL, RUNMATLAB, INGEST, DOWNLOAD, GRAPH, DEPLOYPROCESSOR

• sNamePattern – the Name filter. The name meaning depends by the operation type, null by
default. For RUNPROCESSOR, RUNIDL and RUNMATLAB is the name of the application

Returns
a list of process IDs

286 Chapter 5. Reference center

WASDI documentation center

GetProcessesByWorkspace

public List<string> GetProcessesByWorkspaceAsListOfJson(int iStartIndex, Int32 iEndIndex, string sStatus,
string sOperationType, string sNamePattern)

Get a paginated list of processes in the active workspace.

Parameters
• iStartIndex – the start index of the process (0 by default is the last one)

• iEndIndex – the end index of the process (optional)

• sStatus – the status filter, null by default. Can be CREATED, RUNNING, STOPPED,
DONE, ERROR, WAITING, READY

• sOperationType – the Operation Type Filter, null by default. Can be RUNPROCESSOR,
RUNIDL, RUNMATLAB, INGEST, DOWNLOAD, GRAPH, DEPLOYPROCESSOR

• sNamePattern – the Name filter. The name meaning depends by the operation type, null by
default. For RUNPROCESSOR, RUNIDL and RUNMATLAB is the name of the application

Returns
a list of process IDs

GetProcessorPayload

public Dictionary<string, object> GetProcessorPayload(string sProcessObjId)
Gets the processor payload as a dictionary.

Parameters
• sProcessObjId – the Id of the processor

Returns
the processor payload as a dictionary

GetProcessorPayloadAsJSON

public Dictionary<string, object> GetProcessorPayloadAsJSON(string sProcessObjId)
Retrieve the payload of a processor formatted as a JSON string.

Parameters
• sProcessObjId – the Id of the processor

Returns
the payload as a JSON string, or null if error occurred

5.1. C# WasdiLib 287

WASDI documentation center

GetProductBbox

public string GetProductBbox(string sFileName)
Get the product bounding box.

Parameters
• sFileName – the file name

Returns
the product bounding box

DownloadFile

public string DownloadFile(string sFileName)
Download a file on the local PC.

Parameters
• sFileName – the name of the file

Returns
the full path of the file

UploadFile

public bool UploadFile(string sFileName)
Uploads and ingest a file in WASDI.

Parameters
• sFileName – the name of the file to upload

Returns
True if the file was uploaded, False otherwise

Throws
• Exception – in case of any issues

CopyFileToSftp

public string CopyFileToSftp(string sFileName)
Copy a file from a workspace to the WASDI user’s SFTP Folder in a synchronous way.

Parameters
• sFileName – the filename to move to the SFTP folder

Returns
the Process Id is synchronous execution, end status otherwise. An empty string is returned in
case of failure

288 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html

WASDI documentation center

CopyFileToSftp

public string CopyFileToSftp(string sFileName, string sRelativePath)
Copy a file from a workspace to the WASDI user’s SFTP Folder in a synchronous way.

Parameters
• sFileName – the filename to move to the SFTP folder

• sRelativePath – the relative path in the SFTP root

Returns
the Process Id is synchronous execution, end status otherwise. An empty string is returned in
case of failure

AsynchCopyFileToSftp

public string CopyFileToSftp(string sFileName)
Copy a file from a workspace to the WASDI user’s SFTP Folder in a asynchronous way.

Parameters
• sFileName – the filename to move to the SFTP folder

Returns
the Process Id is asynchronous execution, end status otherwise. An empty string is returned in
case of failure

AsynchCopyFileToSftp

public string CopyFileToSftp(string sFileName, string sRelativePath)
Copy a file from a workspace to the WASDI user’s SFTP Folder in a asynchronous way.

Parameters
• sFileName – the filename to move to the SFTP folder

• sRelativePath – the relative path in the SFTP root

Returns
the Process Id is asynchronous execution, end status otherwise. An empty string is returned in
case of failure

SetSubPid

public string SetSubPid(string sProcessId, int iSubPid)
Sets the sub pid.

Parameters
• sProcessId – the process Id

• iSubPid – the subPid of the process

Returns
the updated status of the processs

5.1. C# WasdiLib 289

WASDI documentation center

PrintStatus

public void PrintStatus()
Print the status information ot the Wasdi application.

5.2 Java WasdiLib

public class WasdiLib

5.2.1 Fields

s_oMapper

protected static ObjectMapper s_oMapper

5.2.2 Constructors

WasdiLib

public WasdiLib()
Self constructor. If there is a config file initializes the class members

5.2.3 Methods

addFileToWASDI

public String addFileToWASDI(String sFileName)
Ingest a new file in the Active WASDI Workspace waiting for the result The method takes a file saved in the
workspace root (see getSaveFilePath) not already added to the WS To work be sure that the file is on the server

Parameters
• sFileName – Name of the file to add

Returns
Output state of the ingestion process

addParam

public void addParam(String sKey, String sParam)

Add Param

Parameters
• sKey –

• sParam –

290 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

asynchAddFileToWASDI

public String asynchAddFileToWASDI(String sFileName)
Ingest a new file in the Active WASDI Workspace in an asynch way The method takes a file saved in the workspace
root (see getSaveFilePath) not already added to the WS To work be sure that the file is on the server

Parameters
• sFileName – Name of the file to add

Returns
Process Id of the ingestion process

asynchExecuteProcessor

public String asynchExecuteProcessor(String sProcessorName, HashMap<String, Object> aoParams)
Execute a WASDI processor in Asynch way

Parameters
• sProcessorName – Processor Name

• aoParams – Dictionary of Params

Returns
ProcessWorkspace Id

asynchExecuteProcessor

public String asynchExecuteProcessor(String sProcessorName, String sEncodedParams)
Execute a WASDI processor in Asynch way

Parameters
• sProcessorName – Processor Name

• sEncodedParams – Already JSON Encoded Params

Returns
ProcessWorkspace Id

asynchExecuteWorkflow

public String asynchExecuteWorkflow(String[] asInputFileName, String[] asOutputFileName, String
sWorkflowName)

Executes a WASDI SNAP Workflow in a asynch mode

Parameters
• sInputFileName –

• sOutputFileName –

• sWorkflowName –

Returns
Workflow Process Id if every thing is ok, ‘’ if there was any problem

5.2. Java WasdiLib 291

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

asynchMosaic

public String asynchMosaic(List<String> asInputFiles, String sOutputFile)
Asynch Mosaic with minimum parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

Returns
Process id

asynchMosaic

public String asynchMosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue)

Asynch Mosaic with also Bands Parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

Returns
Process id

asynchMosaic

public String asynchMosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue, List<String> asBands)

Asynch Mosaic with also Bands Parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

Returns
Process id

asynchMosaic

public String asynchMosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue, List<String> asBands, double dPixelSizeX, double dPixelSizeY)

Asynch Mosaic with also Pixel Size Parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

292 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

Returns
Process id

asynchMosaic

public String asynchMosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue, List<String> asBands, double dPixelSizeX, double dPixelSizeY ,
String sCrs)

Asynch Mosaic with also CRS Input

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

• sCrs – WKT of the CRS to use

Returns
Process id

asynchMosaic

public String asynchMosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue, List<String> asBands, double dPixelSizeX, double dPixelSizeY ,
String sCrs, double dSouthBound, double dNorthBound, double dEastBound, double
dWestBound, String sOverlappingMethod, boolean bShowSourceProducts, String
sElevationModelName, String sResamplingName, boolean bUpdateMode, boolean
bNativeResolution, String sCombine)

Asynch Mosaic with all the input parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

• sCrs – WKT of the CRS to use

• dSouthBound – South Bound

• dNorthBound – North Bound

• dEastBound – East Bound

• dWestBound – West Bound

5.2. Java WasdiLib 293

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

• sOverlappingMethod – Overlapping Method

• bShowSourceProducts – Show Source Products Flag

• sElevationModelName – DEM Model Name

• sResamplingName – Resampling Method Name

• bUpdateMode – Update Mode Flag

• bNativeResolution – Native Resolution Flag

• sCombine – Combine verb

Returns
Process id

checkSession

public String checkSession(String sSessionID)

Call CheckSession API

Parameters
• sSessionID – actual session Id

Returns
Session Id or “” if there are problems

copyStream

protected void copyStream(InputStream oInputStream, OutputStream oOutputStream)

copyStreamAndClose

protected void copyStreamAndClose(InputStream oInputStream, OutputStream oOutputStream)

Copy Input Stream in Output Stream

Parameters
• oInputStream –

• oOutputStream –

Throws
• IOException –

deleteProduct

public String deleteProduct(String sProduct)
Delete a Product in the active Workspace

Parameters
• sProduct –

294 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
http://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
http://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
http://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

downloadFile

protected String downloadFile(String sFileName)
Download a file on the local PC

Parameters
• sFileName – File Name

Returns
Full Path

executeWorkflow

public String executeWorkflow(String[] asInputFileName, String[] asOutputFileName, String sWorkflowName)
Executes a WASDI SNAP Workflow waiting for the process to finish

Parameters
• sInputFileName –

• sOutputFileName –

• sWorkflowName –

Returns
output status of the Workflow Process

getActiveWorkspace

public String getActiveWorkspace()
Get Active Workspace

getBasePath

public String getBasePath()
Set Base Path

getBaseUrl

public String getBaseUrl()
Get Base Url

getDownloadActive

public Boolean getDownloadActive()
Get Download Active flag

5.2. Java WasdiLib 295

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html

WASDI documentation center

getFoundProductLink

public String getFoundProductLink(Map<String, Object> oProduct)
Get the direct download link of a Product found by searchEOImage

Parameters
• oProduct – JSON Dictionary Product as returned by searchEOImage

Returns
Name of the product

getFoundProductName

public String getFoundProductName(Map<String, Object> oProduct)
Get the name of a Product found by searchEOImage

Parameters
• oProduct – JSON Dictionary Product as returned by searchEOImage

Returns
Name of the product

getFullProductPath

public String getFullProductPath(String sProductName)
Get the full local path of a product given the product name. Use the output of this API to open the file

Parameters
• sProductName – Product Name

Returns
Product Full Path as a String ready to open file

getIsOnServer

public Boolean getIsOnServer()
Get is on server flag

getMyProcId

public String getMyProcId()
Get my own Process Id

296 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

getParam

public String getParam(String sKey)
Get Param

Parameters
• sKey –

getParametersFilePath

public String getParametersFilePath()
Get Parameters file path

Returns
parameters file path

getParams

public HashMap<String, String> getParams()
Get Params HashMap

Returns
Params Dictionary

getPassword

public String getPassword()
Get Password

getPath

public String getPath(String sProductName)
Get the local path of a file

Parameters
• sProductName – Name of the file

Returns
Full local path

getProcessStatus

public String getProcessStatus(String sProcessId)
Get WASDI Process Status

Parameters
• sProcessId – Process Id

Returns
Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ERROR, WAITING,
READY

5.2. Java WasdiLib 297

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

getProcessorPath

public String getProcessorPath()
Get the processor Path

getProductsByActiveWorkspace

public List<String> getProductsByActiveWorkspace()
Get a List of the products in the active Workspace

Returns
List of Strings representing the product names

getProductsByWorkspace

public List<String> getProductsByWorkspace(String sWorkspaceName)
Get a List of the products in a Workspace

Parameters
• sWorkspaceName – Workspace Name

Returns
List of Strings representing the product names

getSavePath

public String getSavePath()
Get the local Save Path to use to save custom generated files

Returns
Local Path to use to save a custom generated file

getSessionId

public String getSessionId()
Get Session Id

getStandardHeaders

protected HashMap<String, String> getStandardHeaders()
Get the standard headers for a WASDI call

298 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

getStreamingHeaders

protected HashMap<String, String> getStreamingHeaders()
Get the headers for a Streming POST call

getUser

public String getUser()
Get User

Returns
User

getVerbose

public Boolean getVerbose()
Get Verbose Flag

getWorkflows

public List<Map<String, Object>> getWorkflows()
Get the list of Workflows for the user Return None if there is any error Return an array of WASI Workspace
JSON Objects if everything is ok: { “description”:STRING, “name”: STRING, “workflowId”: STRING }

getWorkspaceBaseUrl

public String getWorkspaceBaseUrl()

getWorkspaceIdByName

public String getWorkspaceIdByName(String sWorkspaceName)
Get Id of a Workspace from the name Return the WorkspaceId as a String, “” if there is any error

Parameters
• sWorkspaceName – Workspace Name

Returns
Workspace Id if found, “” if there is any error

getWorkspaceOwnerByName

public String getWorkspaceOwnerByName(String sWorkspaceName)
Get User Id of the owner of a Workspace from the name Return the userId as a String, “” if there is any error

Parameters
• sWorkspaceName – Workspace Name

Returns
User Id if found, “” if there is any error

5.2. Java WasdiLib 299

http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

getWorkspaceOwnerByWSId

public String getWorkspaceOwnerByWSId(String sWorkspaceId)
Get userId of the owner of a Workspace from the workspace Id Return the userId as a String, “” if there is any
error

Parameters
• WorkspaceId – Workspace Id

Returns
userId if found, “” if there is any error

getWorkspaces

public List<Map<String, Object>> getWorkspaces()
get the list of workspaces of the logged user

Returns
List of Workspace as JSON representation

httpGet

public String httpGet(String sUrl, Map<String, String> asHeaders)
Http get Method Helper

Parameters
• sUrl – Url to call

• asHeaders – Headers Dictionary

Returns
Server response

httpPost

public String httpPost(String sUrl, String sPayload, Map<String, String> asHeaders)
Standard http post uility function

Parameters
• sUrl – url to call

• sPayload – payload of the post

• asHeaders – headers dictionary

Returns
server response

300 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

importProduct

public String importProduct(Map<String, Object> oProduct)
Import a Product from a Provider in WASDI.

Parameters
• oProduct – Product Map JSON representation as returned by searchEOImage

Returns
status of the Import process

importProduct

public String importProduct(String sFileUrl)
Import a Product from a Provider in WASDI.

Parameters
• sFileUrl – Direct link of the product

Returns
status of the Import process

importProduct

public String importProduct(String sFileUrl, String sBoundingBox)
Import a Product from a Provider in WASDI.

Parameters
• sFileUrl – Direct link of the product

• sBoundingBox – Bounding Box of the product

Returns
status of the Import process

init

public Boolean init(String sConfigFilePath)
Init the WASDI Library starting from a configuration file

Parameters
• sConfigFilePath – full path of the configuration file

Returns
True if the system is initialized, False if there is any error

5.2. Java WasdiLib 301

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

init

public Boolean init()

internalAddFileToWASDI

protected String internalAddFileToWASDI(String sFileName, Boolean bAsynch)
Private version of the add file to wasdi function. Adds a generated file to current open workspace

Parameters
• sFileName – File Name to add to the open workspace

• bAsynch – true if the process has to be asynch, false to wait for the result

internalExecuteWorkflow

protected String internalExecuteWorkflow(String[] asInputFileNames, String[] asOutputFileNames, String
sWorkflowName, Boolean bAsynch)

Internal execute workflow

Parameters
• asInputFileNames –

• asOutputFileNames –

• sWorkflowName –

• bAsynch – true if asynch, false for synch

Returns
if Asynch, the process Id else the ouput status of the workflow process

internalInit

public Boolean internalInit()
Call this after base parameters settings to init the system Needed at least: Base Path User Password or SessionId

internalMosaic

protected String internalMosaic(boolean bAsynch, List<String> asInputFiles, String sOutputFile)
Protected Mosaic with minimum parameters

Parameters
• bAsynch – True to return after the triggering, False to wait the process to finish

• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

Returns
Process id or end status of the process

302 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

internalMosaic

protected String internalMosaic(boolean bAsynch, List<String> asInputFiles, String sOutputFile, String
sNoDataValue, String sInputIgnoreValue)

Protected Mosaic with also nodata value parameters

Parameters
• bAsynch – True to return after the triggering, False to wait the process to finish

• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• sNoDataValue – Value to use in output as no data

• sInputIgnoreValue – Value to use as input no data

Returns
Process id or end status of the process

internalMosaic

protected String internalMosaic(boolean bAsynch, List<String> asInputFiles, String sOutputFile, String
sNoDataValue, String sInputIgnoreValue, List<String> asBands)

Protected Mosaic with also Bands Parameters

Parameters
• bAsynch – True to return after the triggering, False to wait the process to finish

• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

Returns
Process id or end status of the process

internalMosaic

protected String internalMosaic(boolean bAsynch, List<String> asInputFiles, String sOutputFile, String
sNoDataValue, String sInputIgnoreValue, List<String> asBands, double
dPixelSizeX, double dPixelSizeY)

Protected Mosaic with also Pixel Size Parameters

Parameters
• bAsynch – True to return after the triggering, False to wait the process to finish

• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

5.2. Java WasdiLib 303

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

Returns
Process id or end status of the process

internalMosaic

protected String internalMosaic(boolean bAsynch, List<String> asInputFiles, String sOutputFile, String
sNoDataValue, String sInputIgnoreValue, List<String> asBands, double
dPixelSizeX, double dPixelSizeY , String sCrs)

Protected Mosaic with also CRS Input

Parameters
• bAsynch – True to return after the triggering, False to wait the process to finish

• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

• sCrs – WKT of the CRS to use

Returns
Process id or end status of the process

internalMosaic

protected String internalMosaic(boolean bAsynch, List<String> asInputFiles, String sOutputFile, String
sNoDataValue, String sInputIgnoreValue, List<String> asBands, double
dPixelSizeX, double dPixelSizeY , String sCrs, double dSouthBound, double
dNorthBound, double dEastBound, double dWestBound, String
sOverlappingMethod, boolean bShowSourceProducts, String
sElevationModelName, String sResamplingName, boolean bUpdateMode,
boolean bNativeResolution, String sCombine)

Protected Mosaic with all the input parameters

Parameters
• bAsynch – True to return after the triggering, False to wait the process to finish

• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

• sCrs – WKT of the CRS to use

• dSouthBound – South Bound

• dNorthBound – North Bound

• dEastBound – East Bound

304 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

• dWestBound – West Bound

• sOverlappingMethod – Overlapping Method

• bShowSourceProducts – Show Source Products Flag

• sElevationModelName – DEM Model Name

• sResamplingName – Resampling Method Name

• bUpdateMode – Update Mode Flag

• bNativeResolution – Native Resolution Flag

• sCombine – Combine verb

Returns
Process id or end status of the process

log

protected void log(String sLog)
Log

Parameters
• sLog – Log row

login

public String login(String sUser, String sPassword)
Call Login API

Parameters
• sUser –

• sPassword –

mosaic

public String mosaic(List<String> asInputFiles, String sOutputFile)
Mosaic with minimum parameters: input and output files

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

Returns
End status of the process

5.2. Java WasdiLib 305

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

mosaic

public String mosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue)

Mosaic with also NoData Parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• sNoDataValue – Value to use in output as no data

• sInputIgnoreValue – Value to use as input no data

Returns
End status of the process

mosaic

public String mosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue, List<String> asBands)

Mosaic with also Bands Parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

Returns
End status of the process

mosaic

public String mosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String
sInputIgnoreValue, List<String> asBands, double dPixelSizeX, double dPixelSizeY)

Mosaic with also Pixel Size Parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

Returns
End status of the process

306 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

mosaic

public String mosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String sInputIgnoreValue,
List<String> asBands, double dPixelSizeX, double dPixelSizeY , String sCrs)

Mosaic with also CRS Input

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

• sCrs – WKT of the CRS to use

Returns
End status of the process

mosaic

public String mosaic(List<String> asInputFiles, String sOutputFile, String sNoDataValue, String sInputIgnoreValue,
List<String> asBands, double dPixelSizeX, double dPixelSizeY , String sCrs, double
dSouthBound, double dNorthBound, double dEastBound, double dWestBound, String
sOverlappingMethod, boolean bShowSourceProducts, String sElevationModelName, String
sResamplingName, boolean bUpdateMode, boolean bNativeResolution, String sCombine)

Mosaic with all the input parameters

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• asBands – List of the bands to use for the mosaic

• dPixelSizeX – X Pixel Size

• dPixelSizeY – Y Pixel Size

• sCrs – WKT of the CRS to use

• dSouthBound – South Bound

• dNorthBound – North Bound

• dEastBound – East Bound

• dWestBound – West Bound

• sOverlappingMethod – Overlapping Method

• bShowSourceProducts – Show Source Products Flag

• sElevationModelName – DEM Model Name

• sResamplingName – Resampling Method Name

• bUpdateMode – Update Mode Flag

• bNativeResolution – Native Resolution Flag

5.2. Java WasdiLib 307

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

• sCombine – Combine verb

Returns
End status of the process

openWorkspace

public String openWorkspace(String sWorkspaceName)
Open a workspace

Parameters
• sWorkspaceName – Workspace name to open

Returns
WorkspaceId as a String, ‘’ if there is any error

refreshParameters

public void refreshParameters()
Refresh Parameters reading again the file

searchEOImages

public List<Map<String, Object>> searchEOImages(String sPlatform, String sDateFrom, String sDateTo, Double
dULLat, Double dULLon, Double dLRLat, Double dLRLon,
String sProductType, Integer iOrbitNumber, String
sSensorOperationalMode, String sCloudCoverage)

Search EO-Images

Parameters
• sPlatform – Satellite Platform. Accepts “S1”,”S2”

• sDateFrom – Starting date in format “YYYY-MM-DD”

• sDateTo – End date in format “YYYY-MM-DD”

• dULLat – Upper Left Lat Coordinate. Can be null.

• dULLon – Upper Left Lon Coordinate. Can be null.

• dLRLat – Lower Right Lat Coordinate. Can be null.

• dLRLon – Lower Right Lon Coordinate. Can be null.

• sProductType – Product Type. If Platform = “S1” -> Accepts “SLC”,”GRD”, “OCN”. If
Platform = “S2” -> Accepts “S2MSI1C”,”S2MSI2Ap”,”S2MSI2A”. Can be null.

• iOrbitNumber – Sentinel Orbit Number. Can be null.

• sSensorOperationalMode – Sensor Operational Mode. ONLY for S1. Accepts -> “SM”,
“IW”, “EW”, “WV”. Can be null. Ignored for Platform “S2”

• sCloudCoverage – Cloud Coverage. Sample syntax: [0 TO 9.4]

Returns
List of the available products as a LIST of Dictionary representing JSON Object: { footprint
= id = link = provider = Size = title = properties = < Another JSON Object containing other
product-specific info > }

308 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/List.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

setActiveWorkspace

public void setActiveWorkspace(String sActiveWorkspace)
Set Active Workspace

Parameters
• sActiveWorkspace –

setBasePath

public void setBasePath(String sBasePath)
Get Base Path

Parameters
• sBasePath –

setBaseUrl

public void setBaseUrl(String sBaseUrl)
Set Base URl

Parameters
• sBaseUrl –

setDownloadActive

public void setDownloadActive(Boolean bDownloadActive)
Set Download Active Flag

Parameters
• bDownloadActive –

setIsOnServer

public void setIsOnServer(Boolean bIsOnServer)
Set is on server flag

Parameters
• bIsOnServer –

setMyProcId

public void setMyProcId(String sMyProcId)
Set My own process ID

Parameters
• m_sMyProcId –

5.2. Java WasdiLib 309

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

setParametersFilePath

public void setParametersFilePath(String sParametersFilePath)
Set Parameters file path

Parameters
• sParametersFilePath – parameters file path

setPassword

public void setPassword(String sPassword)
Set Password

Parameters
• sPassword –

setProcessPayload

public String setProcessPayload(String sProcessId, String sData)
Adds output payload to a process

Parameters
• sProcessId –

• sData –

setSessionId

public void setSessionId(String sSessionId)
Set Session Id

Parameters
• sSessionId –

setUser

public void setUser(String sUser)
Set User

Parameters
• sUser – User

310 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

setVerbose

public void setVerbose(Boolean bVerbose)
Set Verbose flag

Parameters
• bVerbose –

setWorkspaceBaseUrl

public void setWorkspaceBaseUrl(String m_sWorkspaceBaseUrl)

subset

public String subset(String sInputFile, String sOutputFile, double dLatN , double dLonW , double dLatS, double
dLonE)

Make a Subset (tile) of an input image in a specified Lat Lon Rectangle

Parameters
• sInputFile – Name of the input file

• sOutputFile – Name of the output file

• dLatN – Lat North Coordinate

• dLonW – Lon West Coordinate

• dLatS – Lat South Coordinate

• dLonE – Lon East Coordinate

Returns
Status of the operation

updateProcessStatus

public String updateProcessStatus(String sProcessId, String sStatus, int iPerc)
Update the status of a process

Parameters
• sProcessId – Process Id

• sStatus – Status to set

• iPerc – Progress in %

Returns
updated status as a String or ‘’ if there was any problem

5.2. Java WasdiLib 311

http://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

updateProgressPerc

public String updateProgressPerc(int iPerc)
Update the status of a process

Parameters
• sProcessId – Process Id

• sStatus – Status to set

• iPerc – Progress in %

Returns
updated status as a String or ‘’ if there was any problem

updateStatus

public String updateStatus(String sStatus)
Update the status of the current process

Parameters
• sStatus – Status to set

• iPerc – Progress in %

Returns
updated status as a String or ‘’ if there was any problem

updateStatus

public String updateStatus(String sStatus, int iPerc)
Update the status of the current process

Parameters
• sStatus – Status to set

• iPerc – Progress in %

Returns
updated status as a String or ‘’ if there was any problem

uploadFile

public void uploadFile(String sFileName)

Parameters
• sFileName –

312 Chapter 5. Reference center

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

waitForResume

protected void waitForResume()
Wait for a process to finish

Parameters
• sProcessId –

waitProcess

public String waitProcess(String sProcessId)
Wait for a process to finish

Parameters
• sProcessId –

5.3 Matlab WasdiLib

5.3.1 Methods

startWasdi

matlabwasdilib.startWasdi(config_path)
Initialize the Wasdi object

Parameters
config_path – The path to be used to import the configuration.

Returns
Wasdi

The object to be used to invoke all the following call to Wasdi services

wAddFileToWASDI

matlabwasdilib.wAddFileToWASDI(Wasdi, sFileName)
Ingest a new file in the Active WASDI Workspace waiting for the result The method takes a file saved
in the workspace root (see getSaveFilePath) not already added to the WS o work be sure that the file
is on the server Syntax sStatus =wAddFileToWASDI(Wasdi, sFileName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sFileName – Name of the file to add

Returns
sStatus

Status of the Ingest Process as a String: CREATED, RUNNING, STOPPED,
DONE, ERROR

5.3. Matlab WasdiLib 313

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

WASDI documentation center

wAddParam

matlabwasdilib.wAddParam(Wasdi, sKey, sValue)
Adds a parameter to current processor Syntax wAddParam(Wasdi, sKey, sValue)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sKey – a string to be used as key for the param

• sValue – a string to be used as a value

wAsynchAddFileToWASDI

matlabwasdilib.wAsynchAddFileToWASDI(Wasdi, sFileName)
Ingest a new file in the Active WASDI Workspace WITHOUT waiting for the result The method takes
a file saved in the workspace root (see getSaveFilePath) not already added to the WS If the file is not
present in the WASDI cloud workpsace, it will be automatically uploaded if the config AUTOU-
PLOAD flag is true (default) Syntax sStatus =wAsynchAddFileToWASDI(Wasdi, sFileName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sFileName – Name of the file to add

Returns
sProcessId

Process Id of the WASDI Ingest operation on the server. Can be used as in-
put to the wWaitProcess method or wGetProcessStatus methods to check the
execution.

wAsynchCopyFileToSftp

matlabwasdilib.wAsynchCopyFileToSftp(Wasdi, sFileName, sRelativePath)
Copy file to SFTP folder, asynchronous version Syntax wAsynchCopyFileToSftp(Wasdi, sFileName,
sRelativePath)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sFileName – a string containing the file name

• sRelativePath – a string containinng the relative path

314 Chapter 5. Reference center

WASDI documentation center

wAsynchExecuteProcessor

matlabwasdilib.wAsynchExecuteProcessor(Wasdi, sProcessorName, asParams)
Execute a WASDI processor asynchronously Syntax sStatus=wAsynchExecuteProcessor(Wasdi,
sProcessorName, asParams)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessorName – Processor Name

• asParams – Processor parameters, as a key/value dictionary

Returns
sProcessId

process workspace id. It can be used as input to the wWaitProcess method or
wGetProcessStatus methods to check the execution.

wAsynchExecuteWorkflow

matlabwasdilib.wAsynchExecuteWorkflow(Wasdi, sWorkflow, asInputFiles, asOutputFiles)
Executes a SNAP workflow in Asynch mode. The workflow has to be uploaded in WASDI: it can be
public or private of a user. If it is private, it must be triggered from the owner. Syntax sProcessId =
wExecuteWorkflow(Wasdi, sWorkflow, asInputFiles, asOutputFiles);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkflow – Name of the workflow

• asInputFiles – array of strings with the name of the input files. Must be one file
for each Read Node of the workflow, in the exact order

• asOutputFiles – array of strings with the name of the output files. Must be one
file for each Write Node of the workflow, in the exact order

Returns
sProcessId

Id of the process representing the Workflow execution. Can be used as input to
the wWaitProcess method or wGetProcessStatus methods to check the execu-
tion.

wAsynchImportProduct

matlabwasdilib.wAsynchImportProduct(Wasdi, sProductLink, sName, sBoundingBox='',
sProvider='AUTO')

Import an EO Image in WASDI. This is the asynchronous version Syntax sSta-
tus=wImportProduct(Wasdi, sProductLink, sName)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProductLink – Product Direct Link as returned by wSearchEOImage

• sName – Product Name as returned by wSearchEOImage

5.3. Matlab WasdiLib 315

WASDI documentation center

• sBoundingBox – product bounding box, optional

• sProvider – data provider, optional

Returns
param sProcessObjId

Identifier of the import process

wAsynchImportProductList

matlabwasdilib.wAsynchImportProductList(Wasdi, asProductLinks, asProductNames)
Import an EO Image in WASDI. This is the asynchronous version Syntax sProcessOb-
jId=wAsynchImportProductList(Wasdi, asProductLinks, asProductNames)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• asProductLinks – collection of Product Direct Link as returned by wSearchEOIm-
age

• asProductNames – collection of Product Names as returned by wSearchEOImage

Returns
param asStatuses

list of statuses of the import processes

wAsynchMosaic

matlabwasdilib.wAsynchMosaic(Wasdi, asInputFileNames, sOutputFile, sNoDataValue,
sInputIgnoreValue)

Mosaic input images in the output file Syntax sProcessId=wAsynchMosaic(Wasdi, asInputFile-
Names, sOutputFile, sNoDataValue, sInputIgnoreValue)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• asInputFileNames – Array of input file names

• sOutputFile – Name of the output file

• sNoDataValue – value to use as no data in the output file

• sInputIgnoreValue – value used as no data in the input file

Returns
sProcessId

Id of the mosaic process on WASDI. Can be used as input to the wWaitProcess
method or wGetProcessStatus methods to check the execution.

316 Chapter 5. Reference center

WASDI documentation center

wAsynchMultiSubset

matlabwasdilib.wAsynchMultiSubset(Wasdi, sInputFile, asOutputFiles, adLatN , adLonW ,
adLatS, adLonE)

Extracts subsets of an image given its name and the desired bounding boxes.Asynchronous version
Syntax sReturn=wAsynchMultiSubset(Wasdi, sInputFile, asOutputFiles, adLatN, adLonW, adLatS,
adLonE)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sInputFile – the input file from where subsets must be extracted

• asOutputFiles – names to be given to output files

• adLatN – a collection of Northernmost latitudes

• adLonW – a collection of Westernmost longitudes

• adLatS – a collection of Southernmost latitudes

• adLonE – a collection of Easternnmost longitudes

wCopyFileToSftp

matlabwasdilib.wCopyFileToSftp(Wasdi, sFileName, sRelativePath)
Copy file to SFTP folder, synchronous version Syntax wCopyFileToSftp(Wasdi, sFileName, sRela-
tivePath)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sFileName – a string containing the file name

• sRelativePath – a string containinng the relative path

Returns
sProcessId

process workspace id. It can be used as input to the wWaitProcess method or
wGetProcessStatus methods to check the execution.

wCreateWorkspace

matlabwasdilib.wCreateWorkspace(Wasdi, sWorkspaceName, sNodeCode='')
Copy file to SFTP folder, asynchronous version Syntax wCreateWorkspace(Wasdi, sWorkspace-
Name, sNodeCode)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkspaceName – the name of the workspace

• sNodeCode – the code of the node, optional

Returns
sWorkspaceId

the ID of the workspace (empty in case of error)

5.3. Matlab WasdiLib 317

WASDI documentation center

wDeleteProduct

matlabwasdilib.wDeleteProduct(Wasdi, sProductName)
Deletes a product in active workspace Syntax sStatus = wDeleteProduct(Wasdi, sProductName)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sFileName – Name of the file to add

Returns
sStatus

empty string if deletion was successful, null in case it did not work

wDeleteWorkspace

matlabwasdilib.wDeleteWorkspace(Wasdi, sWorkspaceName)
Deletes a workspace. If the user is not the workspace owner, then just the sharing is deleted Syntax
sStatus = wDeleteProduct(Wasdi, sWorkspaceName)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkspaceName – the name of the workspace to be deleted

Returns
sStatus

empty string if deletion was successful, null in case it did not work

wExecuteProcessor

matlabwasdilib.wExecuteProcessor(Wasdi, sProcessorName, asParams)
Execute a WASDI processor asynchronously Syntax sStatus=wExecuteProcessor(Wasdi, sProcessor-
Name, asParams)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessorName – Processor Name

• asParams – Processor parameters, as a key/value dictionary

Returns
sProcessId

process workspace id. It can be used as input to the wWaitProcess method or
wGetProcessStatus methods to check the execution.

318 Chapter 5. Reference center

WASDI documentation center

wExecuteWorkflow

matlabwasdilib.wExecuteWorkflow(Wasdi, sWorkflow, asInputFiles, asOutputFiles)
Executes a SNAP workflow. The workflow has to be uploaded in WASDI: it can be public or private
of a user. If it is private, it must be triggered from the owner. Syntax sStatus = wExecuteWork-
flow(Wasdi, sWorkflow, asInputFiles, asOutputFiles);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkflow – Name of the workflow

• asInputFiles – array of strings with the name of the input files. Must be one file
for each Read Node of the workflow, in the exact order

• asOutputFiles – array of strings with the name of the output files. Must be one
file for each Write Node of the workflow, in the exact order

Returns
sStatus

Exit Workflow Process Status as a String: CREATED, RUNNING, STOPPED,
DONE, ERROR

wGetActiveWorkspace

matlabwasdilib.wGetActiveWorkspace(Wasdi)
Gets the active workspace ID Syntax sWorkspaceId = wGetActiveWorkspace(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sWorkspaceId

the ID of active WASDI workspace

wGetBasePath

matlabwasdilib.wGetBasePath(Wasdi)
Gets the base path Syntax sBasePath = wGetBasePath(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sBasePath

the base path in use

5.3. Matlab WasdiLib 319

WASDI documentation center

wGetBaseUrl

matlabwasdilib.wGetBaseUrl(Wasdi)
Gets the base URL Syntax sBasePath = wGetBaseUrl(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sBaseUrl

the base URL for WASDI

wGetDownloadActive

matlabwasdilib.wGetDownloadActive(Wasdi)
Gets whether download is active or not Syntax bDownloadActive = wGetDownloadActive(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
bDownloadActive

true if download is active, false otherwise

wGetFullProductPath

matlabwasdilib.wGetFullProductPath(Wasdi, sFileName)
Get the full local path of a product. If it is not present on the local PC and DownloadActive flag is
true the product will be downloaded Syntax sFullPath =wGetFullProductPath(Wasdi, sFileName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sFileName – Name of the file

Returns
sFullPath

full local path

wGetMyProcId

matlabwasdilib.wGetMyProcId(Wasdi)
Gets own processor ID Syntax sProcId = wGetProcessorPayloadAsJSON(Wasdi, sProcessObjId)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sProcId

own processor ID

320 Chapter 5. Reference center

WASDI documentation center

wGetParameter

matlabwasdilib.wGetParameter(Wasdi, sKey)
Get the value of a parameter identified by sKey in the parameters file Syntax sParameter = wGetPa-
rameter(Wasdi, sKey)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sKey – The KEY of the parameter in the paramteres file

Returns
sParameter

The value of the parameter. If it does not exists the function returns “”

wGetParametersFilePath

matlabwasdilib.wGetParametersFilePath(Wasdi)
Gets the parameters file path Syntax sParametersFilePath = wGetParametersFilPath(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sParametersFilePath

the path to the parameters file

wGetParams

matlabwasdilib.wGetParams(Wasdi)
Gets processor parameters Syntax asParams = wGetParams(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
asParams

a map containing the parameters

wGetPassword

matlabwasdilib.wGetPassword(Wasdi)
Gets the password Syntax sPassword = wGetPassword(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sPassword

WASDI user’s password

5.3. Matlab WasdiLib 321

WASDI documentation center

wGetPath

matlabwasdilib.wGetPath(Wasdi, sFileName)
Gets the path of given product Syntax sPath = wGetPath(Wasdi, sFileName)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sPath

wasdi local path for given product

wGetProcessStatus

matlabwasdilib.wGetProcessStatus(Wasdi, sProcessId)
Get the status of a Process Syntax sStatus =wGetProcessStatus(Wasdi, sProcessId);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to query

Returns
sStatus

Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ER-
ROR

wGetProcessesByWorkspace

matlabwasdilib.wGetProcessesByWorkspace(Wasdi, iStartIndex=0, iEndIndex=, []sStatus=, [
]sOperationType=, []sNamePattern=[])

Get a paginated list of processes in the active workspace Syntax asPro-
cesses=wgetProcessesByWorkspace(Wasdi, iStartIndex, iEndIndex=[], sStatus=[], sOpera-
tionType=[], sNamePattern=[]?)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• iStartIndex – first index

• iEndIndex – last index

• sStatus – filter by statuses

• sOperationType – filter by operation name

• sNamePattern – filter by name

Returns
asProcesses

list of processes

322 Chapter 5. Reference center

WASDI documentation center

wGetProcessorPath

matlabwasdilib.wGetProcessorPath(Wasdi)
Gets the parameters file path Syntax sProcessorPath = wGetProcessorPath(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sProcessorPath

the path to current processor

wGetProcessorPayload

matlabwasdilib.wGetProcessorPayload(Wasdi, sProcessObjId)
Gets the payload of given processor Syntax oProcessPayload = wGetProcessorPayload(Wasdi, sPro-
cessObjId)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessObjId – process ID for which the payload must be retrieve

Returns
oProcessPayload

an object containing the payload

wGetProcessorPayloadAsJSON

matlabwasdilib.wGetProcessorPayloadAsJSON(Wasdi, sProcessObjId)
Gets the payload of given processor as a JSON string Syntax sProcessPayload = wGetProcessorPay-
loadAsJSON(Wasdi, sProcessObjId)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessObjId – process ID for which the payload must be retrieve

Returns
sProcessPayload

a JSON formatted string containing the payload

wGetProductBbox

matlabwasdilib.wGetProductBbox(Wasdi, sProductName)
Gets own processor ID Syntax sProcId = wGetProductBbox(Wasdi, sProductName)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProductName – the product name for which the bounding box must be retrieved

Returns

5.3. Matlab WasdiLib 323

WASDI documentation center

sBbox
the requested bounding box

wGetProductsByActiveWorkspace

matlabwasdilib.wGetProductsByActiveWorkspace(Wasdi)
Get the List of Products in the active Workspace Syntax asProd-
ucts=wGetProductsByActiveWorkspace(Wasdi);

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
asProducts

array of strings that are the names of the products

wGetProductsByWorkspace

matlabwasdilib.wGetProductsByWorkspace(Wasdi, sWorkspaceName)
Get the List of Products in a Workspace Syntax asProducts=wGetProductsByWorkspace(Wasdi,
sWorkspaceName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkspaceName – name of the workspace

Returns
asProducts

array of strings that are the names of the products

wGetSavePath

matlabwasdilib.wGetSavePath(Wasdi)
Get the full local path where to save a product in the active workspace Syntax sSavePath =wGet-
SavePath(Wasdi);

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sSavePath

the local path to use to save the file, including last /

324 Chapter 5. Reference center

WASDI documentation center

wGetSessionId

matlabwasdilib.wGetSessionId(Wasdi)
Get the session ID Syntax sSessionId = wGetSessionId(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sSessionId

the current session

wGetUploadActive

matlabwasdilib.wGetUploadActive(Wasdi)
Gets whether Upload is active or not Syntax bUploadActive = wGetUploadActive(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
bUploadActive

true if Upload is active, false otherwise

wGetUser

matlabwasdilib.wGetUser(Wasdi)
Gets the user Syntax sUser = wGetUser(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sUser

the username on wasdi

wGetVerbose

matlabwasdilib.wGetVerbose(Wasdi)
Gets verbosity flag Syntax bVerbose = wGetVerbose(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
bVerbose

verbosity flag

5.3. Matlab WasdiLib 325

WASDI documentation center

wGetWorkflows

matlabwasdilib.wGetWorkflows(Wasdi)
Get the List of Workflows of the actual User Syntax [asWorkflowNames, asWork-
flowIds]=wGetWorkflows(Wasdi);

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
asWorkflowNames

array of strings that are the names of the workflows

asWorkflowIds
array of strings that are the id of the workflows

wGetWorkspaceBaseUrl

matlabwasdilib.wGetWorkspaceBaseUrl(Wasdi)
Gets the workspace base URL Syntax sWorkspaceBaseUrl = wGetWorkspaceBaseUrl(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sWorkspaceBaseUrl

the base URL for active workspace

wGetWorkspaceIdByName

matlabwasdilib.wGetWorkspaceIdByName(Wasdi, sWorkspaceName)
Get the Id of a Workspace from the name Syntax sWorkspaceId=wGetWorkspaceIdByName(Wasdi,
sWorkspaceName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkspaceName – Name of the workspace

Returns
sWorkspaceId

id of the workspace

wGetWorkspaceOwnerByName

matlabwasdilib.wGetWorkspaceOwnerByName(Wasdi, sWorkspaceName)
Gets the owner of the workspace given its name Syntax sWorkspaceOwner = wGetWorkspaceOwner-
ByName(Wasdi, sWorkspaceName)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkspaceName – the name of the workspace

326 Chapter 5. Reference center

WASDI documentation center

Returns
sWorkspaceOwner

the owner of the workspace

wGetWorkspaceUrlByWsId

matlabwasdilib.wGetWorkspaceUrlByWsId(Wasdi, sWorkspaceId)
Gets the workspace URL given its ID Syntax: sWorkspaceUrl = wGetWorkspaceUrlByWsId(Wasdi,
sWorkspaceId)

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sBaseUrl

the base URL for WASDI

wGetWorkspaces

matlabwasdilib.wGetWorkspaces(Wasdi)

wImportAndPreprocess

matlabwasdilib.wImportAndPreprocess(Wasdi, asProductLinks, asProductNames,
sWorkflowName, sSuffix, sProvider=[])

Import and preprocess a collection of EO products Syntax wImportAndPreprocess(Wasdi, asPro-
ductLinks, asProductNames, sWorkflowName, sSuffix)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• asProductLinks – collection of Product Direct Link as returned by wSearchEOIm-
ages

• asProductNames – collection of Product names, as returned by wSearchEOImages

• sWorkflowName – the name of the SNAP workflow to be applied to downloaded
imagesc

• sSuffix – the suffix to append to the preprocessed files

• sProvider – optional, the provider from where data must be collected

wImportProduct

matlabwasdilib.wImportProduct(Wasdi, sProductLink, sProductName, sBoundingBox='',
sProvider='AUTO')

Import an EO Image in WASDI Syntax sStatus=wImportProduct(Wasdi, sProductLink, sProduct-
Name)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

5.3. Matlab WasdiLib 327

WASDI documentation center

• sProductLink – Product Direct Link as returned by wSearchEOImage

• sProductName – Product Name as returned by wSearchEOImage

• sBoundingBox – product bounding box, optional

• sProvider – data provider, optional

Returns
sProcessObjId

Identifier of the import process

wImportProductList

matlabwasdilib.wImportProductList(Wasdi, asProductLinks, asProductNames)
Import an EO Image in WASDI. This is the asynchronous version Syntax sProcessOb-
jId=wAsynchImportProductList(Wasdi, asProductLinks, asProductNames)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• asProductLinks – collection of Product Direct Link as returned by wSearchEOIm-
age

• asProductNames – collection of Product Names as returned by wSearchEOImage

Returns
asStatuses

list of statuses of the import processes

wLog

matlabwasdilib.wLog(Wasdi, sLogRow)
Add a row to the application logs. Locally, just print on the console if VERBOSE. On the server, it
logs on the WASDI interface. Syntax wLog(Wasdi, sLogRow)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sLogRow – Text to log

wMosaic

matlabwasdilib.wMosaic(Wasdi, asInputFileNames, sOutputFile, sNoDataValue,
sInputIgnoreValue)

Mosaic input images in the output file Syntax sStatus=wMosaic(Wasdi, asInputFileNames, sOutput-
File, sNoDataValue, sInputIgnoreValue)

Parameters
Wasdi – Wasdi object created after the wasdilib call asInputFileNames: Array of input
file names sOutputFile: Name of the output file sNoDataValue: value to use as no data
in the output file sInputIgnoreValue: value used as no data in the input file

Returns

328 Chapter 5. Reference center

WASDI documentation center

sStatus
end status of the mosaic operation

wMultiSubset

matlabwasdilib.wMultiSubset(Wasdi, sInputFile, asOutputFiles, adLatN , adLonW , adLatS,
adLonE)

Extracts subsets of an image given its name and the desired bounding boxes Syntax sRe-
turn=wMultiSubset(Wasdi, sInputFile, asOutputFiles, adLatN, adLonW, adLatS, adLonE)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sInputFile – the input file from where subsets must be extracted

• asOutputFiles – names to be given to output files

• adLatN – a collection of Northernmost latitudes

• adLonW – a collection of Westernmost longitudes

• adLatS – a collection of Southernmost latitudes

• adLonE – a collection of Easternnmost longitudes

wOpenWorkspace

matlabwasdilib.wOpenWorkspace(Wasdi, sWorkspaceName)
Open a Workspace Syntax sWorkspaceId=wOpenWorkspace(Wasdi, sWorkspaceName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkspaceName – Name of the workspace

Returns
sWorkspaceId

id of the workspace

wOpenWorkspaceById

matlabwasdilib.wOpenWorkspaceById(Wasdi, sWorkspaceId)
Opens a workspace given its ID Syntax sWorkspaceId=wOpenWorkspaceById(Wasdi,sWorkspaceId)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkspaceId – ID of the workspace to open

Returns
sWorkspaceId

the ID of the workspace if succesfully opened, empty string otherwise

5.3. Matlab WasdiLib 329

WASDI documentation center

wPrintStatus

matlabwasdilib.wPrintStatus(Wasdi)
Prints the status Syntax: printStatus(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

wRefreshParameters

matlabwasdilib.wRefreshParameters(Wasdi)
Read again the parameters from the configured file Syntax sParameter = wRefreshParameters(Wasdi,
sKey)

Parameters
Wasdi – Wasdi object created after the wasdilib call

wSearchEOImages

matlabwasdilib.wSearchEOImages(Wasdi, sPlatform, sDateFrom, sDateTo, dULLat, dULLon,
dLRLat, dLRLon, sProductType, iOrbitNumber,
sSensorOperationalMode, sCloudCoverage)

Search EO Images. Returns 3 parallel arrays: one with the names, one with the links and one with
the footprints of the found products. The links and footprints can be used as input to the wImport-
Product function, that imports the product in the active workspace Syntax [asProductNames, asPro-
ductLinks, asProductFootprints]=wSearchEOImages(Wasdi, sPlatform, sDateFrom, sDateTo, dUL-
Lat, dULLon, dLRLat, dLRLon, sProductType, iOrbitNumber, sSensorOperationalMode, sCloud-
Coverage);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sPlatform – Satellite Platform. Accepts “S1”,”S2”

• sDateFrom – Starting date in format “YYYY-MM-DD”

• sDateTo – End date in format “YYYY-MM-DD”

• dULLat – Upper Left Lat Coordinate. Can be null.

• dULLon – Upper Left Lon Coordinate. Can be null.

• dLRLat – Lower Right Lat Coordinate. Can be null.

• dLRLon – Lower Right Lon Coordinate. Can be null.

• sProductType – Product Type. If Platform = “S1” -> Accepts “SLC”,”GRD”,
“OCN”. If Platform = “S2” -> Accepts “S2MSI1C”,”S2MSI2Ap”,”S2MSI2A”. Can
be null.

• iOrbitNumber – Sentinel Orbit Number. Can be null.

• sSensorOperationalMode – Sensor Operational Mode. ONLY for S1. Accepts
-> “SM”, “IW”, “EW”, “WV”. Can be null. Ignored for Platform “S2”

• sCloudCoverage – sCloudCoverage Cloud Coverage. Sample syntax: [0 TO 9.4]

Returns

330 Chapter 5. Reference center

WASDI documentation center

asProductNames
array of strings that are the names of the found products

asProductLinks
array of strings that are the links to download the products

asProductFootprints
array of strings that are the footprints of found products in WKT

wSetActiveWorkspaceId

matlabwasdilib.wSetActiveWorkspaceId(Wasdi, sNewActiveWorkspaceId)
Set the active workspace Syntax wSetActiveWorkspaceId(Wasdi, sNewActiveWorkspaceId)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sNewActiveWorkspaceId – the workspace ID to open

wSetBasePath

matlabwasdilib.wSetBasePath(Wasdi, sNewBasePath)
Set the base path Syntax wSetBasePath(Wasdi, sNewBasePath)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sNewBasePath – the new base path

wSetBaseUrl

matlabwasdilib.wSetBaseUrl(Wasdi, sBaseUrl)
Set the base URL Syntax wSetBaseUrl(Wasdi, sBaseUrl)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sBaseUrl – the new base URL (must be valid)

wSetDownloadActive

matlabwasdilib.wSetDownloadActive(Wasdi, iActive)
Set the download active flag Syntax wSetDownloadActive(Wasdi, iActive)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• iActive – true/false

5.3. Matlab WasdiLib 331

WASDI documentation center

wSetIsOnServer

matlabwasdilib.wSetIsOnServer(Wasdi, bIsOnServer)
Set is on server flag Syntax wSetVerbose(Wasdi, bIsOnServer)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• bIsOnServer – true/false

wSetMyProcId

matlabwasdilib.wSetMyProcId(Wasdi, sMyNewProcId)
Set the processor ID Syntax wSetMyProcId(Wasdi, sMyNewProcId)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sMyNewProcId – the new processor ID

wSetParameter

matlabwasdilib.wSetParameter(Wasdi, sKey, sValue)
Set the value of a parameter Syntax sParameter = wSetParameter(Wasdi, sKey, sValue)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sKey – The KEY of the parameter to add or update

• sValue – The the value of the parameter

Returns
sParameter

The value (same as sValue in input)

wSetPassword

matlabwasdilib.wSetPassword(Wasdi, sPassword)
Set the WASDI user password Syntax wSetPassword(Wasdi, sPassword)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sPassword – the password

332 Chapter 5. Reference center

WASDI documentation center

wSetPayload

matlabwasdilib.wSetPayload(Wasdi, sPayload)
Writes a Payload in a process Syntax sStatus =wSetProcessPayload(Wasdi, sProcessId, sData);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sPayload – the process payload

wSetProcessPayload

matlabwasdilib.wSetProcessPayload(Wasdi, sProcessId, sData)
Writes a Payload in a process Syntax sStatus =wSetProcessPayload(Wasdi, sProcessId, sData);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to update

• sData – Data to write as payloar

Returns
sStatus

Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ER-
ROR

wSetSessionId

matlabwasdilib.wSetSessionId(Wasdi, sSessionId)
Set the session ID Syntax wSetSessionId(Wasdi, sSessionId)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sSessionId – the session ID

wSetSubPid

matlabwasdilib.wSetSubPid(Wasdi, sProcessId, iSubPid)
Set the sub pid Syntax sStatus=wSetSubPid(Wasdi, sProcessId, iSubPid)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – the process ID

• iSubPid – the sub pid

5.3. Matlab WasdiLib 333

WASDI documentation center

wSetUploadActive

matlabwasdilib.wSetUploadActive(Wasdi, iActive)
Set the Upload active flag Syntax wSetUploadActive(Wasdi, iActive)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• iActive – true/false

wSetUser

matlabwasdilib.wSetUser(Wasdi, sUser)
Set the user Syntax wSetUser(Wasdi, sUser)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sUser – the user

wSetVerbose

matlabwasdilib.wSetVerbose(Wasdi, bVerbose)
Set verbose flag Syntax wSetVerbose(Wasdi, bVerbose)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• bVerbose – true/false

wSetWorkspaceBaseUrl

matlabwasdilib.wSetWorkspaceBaseUrl(Wasdi, sUrl)
Set the workspace base URL Syntax wSetWorkspaceBaseUrl(Wasdi, sUrl)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sUrl – the workspace base URL

wSubset

matlabwasdilib.wSubset(Wasdi, sInputFile, sOutputFile, dLatN , dLonW , dLatS, dLonE)
Make a Subset (tile) of an input image in a specified Lat Lon Rectangle Syntax sSta-
tus=wSubset(Wasdi, sInputFile, sOutputFile, dLatN, dLonW, dLatS, dLonE)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sInputFile – Name of the input file

• sOutputFile – Name of the output file

334 Chapter 5. Reference center

WASDI documentation center

• dLatN – Lat North Coordinate

• dLonW – Lon West Coordinate

• dLatS – Lat South Coordinate

• dLonE – Lon East Coordinate

Returns
sStatus

Status of the operation

wUpdateProcessStatus

matlabwasdilib.wUpdateProcessStatus(Wasdi, sProcessId, sStatus, iPerc)
Updates the status of a Process Syntax sStatus =wUpdateProcessStatus(Wasdi, sProcessId, sStatus,
iPerc);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to update

• sStatus – updated status. Must be CREATED, RUNNING, STOPPED, DONE,
ERROR

• iPerc – progress percentage of the process

Returns
sOutputStatus

Process Status Updated as a String: CREATED, RUNNING, STOPPED,
DONE, ERROR

wUpdateProgress

matlabwasdilib.wUpdateProgress(Wasdi, iPerc)
Updates the progress of the processor Syntax sStatus =wUpdateProgress(Wasdi, iPerc);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• iPerc – progress percentage of the own process

Returns
sOutputStatus

Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ER-
ROR

5.3. Matlab WasdiLib 335

WASDI documentation center

wUpdateProgressPerc

matlabwasdilib.wUpdateProgressPerc(Wasdi, iPerc)
Updates the status of a process Syntax sStatus = wUpdateProgressPerc(Wasdi, iPerc)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• iPerc – the %of completion

Returns
sStatus

updated status as a String or ‘’ if there was any problem

wUpdateStatus

matlabwasdilib.wUpdateStatus(wasdi, sStatus, iPerc=[])
updates the status and, optionally, the progress percent syntax: sStatus = wUpdateStatus(Wasdi, sSta-
tus, iPerc=[])

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sStatus – the status to be set

• iPerc – optional, the progress percent

wUrlEncode

matlabwasdilib.wUrlEncode(s)

wWaitProcess

matlabwasdilib.wWaitProcess(Wasdi, sProcessId)
Wait for the end of a process Syntax sStatus =wWaitProcess(Wasdi, sProcessId);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to wait

Returns
sStatus

exit status of the process: CREATED, RUNNING, STOPPED, DONE, ERROR

336 Chapter 5. Reference center

WASDI documentation center

wasdiHello

matlabwasdilib.wasdiHello(Wasdi)
Hello world in WASDI. Useful for testing the setup Syntax: wasdiHello(Wasdi)

Parameters
Wasdi – Wasdi object created after the wasdilib call

wasdiLog

matlabwasdilib.wasdiLog(Wasdi, sLine)
Logs a line Syntax wasdiLog(Wasdi, sLine)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sLine – the string to be logged

5.4 Octave WasdiLib

5.4.1 Methods

startWasdi

octavewasdilib.startWasdi()

Initialize the Wasdi object

Parameters
config_path – The path to be used to import the configuration.

Returns
Wasdi The object to be used to invoke all the following call to Wasdi services

addFileToWASDI

octavewasdilib.addFileToWASDI(Wasdi, sFileName)
Ingest a new file in the Active WASDI Workspace waiting for the result The method takes a file saved
in the workspace root (see getSaveFilePath) not already added to the WS o work be sure that the file
is on the server Syntax sStatus =addFileToWASDI(Wasdi, sFileName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sFileName – Name of the file to add

Returns
sStatus Status of the Ingest Process as a String: CREATED, RUNNING, STOPPED,
DONE, ERROR

5.4. Octave WasdiLib 337

WASDI documentation center

executeWorkflow

octavewasdilib.executeWorkflow(Wasdi, sWorkflow, asInputFiles, asOutputFiles)
Executes a SNAP workflow. The workflow has to be uploaded in WASDI: it can be public or private
of a user. If it is private, it must be triggered from the owner. Syntax sStatus = wExecuteWork-
flow(Wasdi, sWorkflow, asInputFiles, asOutputFiles)

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sWorkflow – Name of the workflow

• asInputFiles – array of strings with the name of the input files. Must be one file
for each Read Node of the workflow, in the exact order

• asOutputFiles – array of strings with the name of the output files. Must be one
file for each Write Node of the workflow, in the exact order

Returns
sStatus Exit Workflow Process Status as a String: CREATED, RUNNING,
STOPPED, DONE, ERROR

getFullProductPath

octavewasdilib.getFullProductPath(Wasdi, sFileName)
Get the full local path of a product. If it is not present on the local PC and DownloadActive flag is
true the product will be downloaded. Syntax sFullPath =getFullProductPath(Wasdi, sFileName);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• FileName – Name of the file

Returns
sFullPath full local path

getProcessStatus

octavewasdilib.getProcessStatus(Wasdi, sProcessId)
Get the status of a Process Syntax sStatus =getProcessStatus(Wasdi, sProcessId);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to query

Returns
sStatus Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ER-
ROR

338 Chapter 5. Reference center

WASDI documentation center

getProductsByWorkspace

octavewasdilib.getProductsByWorkspace(Wasdi, sWorkspaceName)
Get the List of Products in a Workspace Syntax asProducts=getProductsByWorkspace(Wasdi,
sWorkspaceName); :param Wasdi: Wasdi object created after the wasdilib call :param sWorkspace-
Name: name of the workspace

returns
asProducts array of strings that are the names of the products

getSavePath

octavewasdilib.getSavePath(Wasdi)
Get the full local path where to save a product in the active workspace Syntax sSavePath =get-
SavePath(Wasdi);

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
sSavePath the local path to use to save the file, including last /

getWorkflows

octavewasdilib.getWorkflows(Wasdi)
Get the List of Workflows of the actual User Syntax [asWorkflowNames, asWork-
flowIds]=getWorkflows(Wasdi);

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
asWorkflowNames array of strings that are the names of the workflows

Returns
asWorkflowIds array of strings that are the id of the workflows

getWorkspaces

octavewasdilib.getWorkspaces(Wasdi)
Get the List of Workspace of the actual User Syntax [asWorkspaceNames, as-
WorkspaceIds]=getWorkspaces(Wasdi);

Parameters
Wasdi – Wasdi object created after the wasdilib call

Returns
asWorkspaceNames array of strings that are the names of the workspaces

Returns
asWorkspaceIds array of strings that are the id of the workspaces

5.4. Octave WasdiLib 339

WASDI documentation center

openWorkspace

octavewasdilib.openWorkspace(Wasdi, sWorkspaceName)
Open a Workspace Syntax sWorkspaceId=openWorkspace(Wasdi, sWorkspaceName);

INPUT :param Wasdi: Wasdi object created after the wasdilib call :param sWorkspaceName: Name
of the workspace

Returns sWorkspaceId
id of the workspace

setProcessPayload

octavewasdilib.setProcessPayload(Wasdi, sProcessId, sData)
Writes a Payload in a process Syntax sStatus =setProcessPayload(Wasdi, sProcessId, sData);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to update

• sData – Data to write as payload

Returns
sStatus Process Status as a String: CREATED, RUNNING, STOPPED, DONE, ER-
ROR

updateProcessStatus

octavewasdilib.updateProcessStatus(Wasdi, sProcessId, sStatus, iPerc)
Updates the status of a Process Syntax sStatus =updateProcessStatus(Wasdi, sProcessId, sStatus,
iPerc);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to update

• sStatus – updated status. Must be CREATED, RUNNING, STOPPED, DONE,
ERROR

• iPerc – progress percentage of the process

Returns
sOutputStatus Process Status Updated as a String: CREATED, RUNNING,
STOPPED, DONE, ERROR

340 Chapter 5. Reference center

WASDI documentation center

waitProcess

octavewasdilib.waitProcess(Wasdi, sProcessId)
Wait for the end of a process Syntax sStatus =waitProcess(Wasdi, sProcessId);

Parameters
• Wasdi – Wasdi object created after the wasdilib call

• sProcessId – Id of the process to wait

returns
sStatus exit status of the process: CREATED, RUNNING, STOPPED,
DONE, ERROR

5.5 Python WasdiLib

5.5.1 Legal Notice

WASDI Sàrl

Disclaimer The library is provided “as-is” without warranty

Neither FadeOut Software (IT) Srl or any of its partners or agents shall be liable for any direct, indirect, incidental,
special, exemplary, or consequential damages (including, but not limited to, breach of expressed or implied contract;
procurement of substitute goods or services; loss of use, data or profits; business interruption; or damage to any equip-
ment, software and/or data files) however caused and on any legal theory of liability, whether for contract, tort, strict
liability, or a combination thereof (including negligence or otherwise) arising in any way out of the direct or indirect
use of software, even if advised of the possibility of such risk and potential damage.

FadeOut Software (IT) Srl uses all reasonable care to ensure that software products and other files that are made available
are safe to use when installed, and that all products are free from any known software virus. For your own protection,
you should scan all files for viruses prior to installation.

WASDI

This is WASPY, the WASDI Python lib.

WASDI is an ESA GSTP Project sponsored by ASI in 2016. The system is a fully scalable and distributed Cloud
based EO analytical platform. The system is cross-cloud and cross DIAS. WASDI is an operating platform that offers
services to develop and deploy DIAS based EO on-line applications, designed to extract value-added information,
made and distributed by EO-Experts without any specific IT/Cloud skills. WASDI offers as well to End-Users the
opportunity to run EO applications both from a dedicated user-friendly interface and from an API based software
interface, fulfilling the real-world business needs. EO-Developers can work using the WASDI Libraries in their usual
programming languages and add to the platform these new blocks in the simplest possible way.

Note: the philosophy of safe programming is adopted as widely as possible, the lib will try to workaround issues such
as faulty input, and print an error rather than raise an exception, so that your program can possibly go on. Please check
the return statues

Version 0.6.2 Last Update: 10/03/2021

Tested with: Python 2.7, Python 3.7

5.5. Python WasdiLib 341

WASDI documentation center

5.5.2 Methods

addFileToWASDI

wasdi.addFileToWASDI(sFileName, sStyle='')
Add a file to the wasdi workspace

Parameters
• sFileName – Name (with extension) of the file to add

• sStyle – name of a valid WMS style

Returns
status of the operation

addParameter

wasdi.addParameter(sKey, oValue)
Adds a parameter

Parameters
• sKey – parameter key

• oValue – parameter value

getParameter

wasdi.getParameter(sKey, oDefault=None)
Gets a parameter using its key

Parameters
• sKey – parameter key

• oDefault – Default value to return if parameter is not present

Returns
parameter value

getParametersDict

wasdi.getParametersDict()

Get the full Params Dictionary

Returns
a dictionary containing the parameters

342 Chapter 5. Reference center

WASDI documentation center

getParametersFilePath

wasdi.getParametersFilePath()

Get the local parameters file Path

Returns
local paramters file path

getSessionId

wasdi.getSessionId()

Get the WASDI Session

Returns
Session Id [String]

getPassword

wasdi.getPassword()

Get the WASDI Password

getUser

wasdi.getUser()

Get the WASDI User

getVerbose

wasdi.getVerbose()

Get Verbose Flag

Returns
True or False

getWorkflows

wasdi.getWorkflows()

Get the list of workflows for the user

Returns
None if there is any error; an array of WASDI Workspace JSON Objects if everything is ok.
The format is as follows:

{
“description”:STRING, “name”: STRING, “workflowId”: STRING

}

5.5. Python WasdiLib 343

WASDI documentation center

getFoundProductName

wasdi.getFoundProductName(aoProduct)
Get The name of a product from a Dictionary returned by Search EO Images

Parameters
aoProduct – dictionary representing the product as returned by Search EO Images

Returns
product name or ‘’ if there was any error

getProductBBOX

wasdi.getProductBBOX(sFileName)
Gets the bounding box of a file

Parameters
sFileName – name of the file to query for bounding box

Returns
Bounding Box if available as a String comma separated in form SOUTH,WEST,EST,NORTH

getProcessorPath

wasdi.getProcessorPath()

Get the local path of the processor (where myProcessor.py is located)

Returns
Local path of the processor

getProcessesByWorkspace

wasdi.getProcessesByWorkspace(iStartIndex=0, iEndIndex=20, sStatus=None, sOperationType=None,
sName=None)

Get a paginated list of processes in the active workspace

Parameters
• iStartIndex – start index of the process (0 by default is the last one)

• iEndIndex – end index of the process (20 by default)

• sStatus – status filter. None by default. Can be CREATED, RUNNING, STOPPED,
DONE, ERROR, WAITING, READY

• sOperationType – Operation Type Filter. None by default. Can be RUNPROCESSOR,
RUNIDL, RUNMATLAB, INGEST, DOWNLOAD, GRAPH, DEPLOYPROCESSOR

• sName – Name filter. The name meaning depends by the operation type. None by default.
For RUNPROCESSOR, RUNIDL and RUNMATLAB is the name of the application

344 Chapter 5. Reference center

WASDI documentation center

getBaseUrl

wasdi.getBaseUrl()

Get the WASDI API URL

Returns
WASDI API URL

setWorkspaceBaseUrl

wasdi.setWorkspaceBaseUrl(sWorkspaceBaseUrl)
Set the Workspace specific API URL

Parameters
sWorkspaceBaseUrl – Workspace API URL

getWorkspaceBaseUrl

wasdi.getWorkspaceBaseUrl()

Get the Workspace API URL

Returns
Workspace API URL

setIsOnServer

wasdi.setIsOnServer(bIsOnServer)
Set the Is on Server Flag: keep it false, as default, while developing

Parameters
bIsOnServer – set the flag to know if the processor is running on the server or on the local
PC

getIsOnServer

wasdi.getIsOnServer()

Are we running on a WASDI Server?

Returns
True if it is running on server, False if it is running on the local Machine

setDownloadActive

wasdi.setDownloadActive(bDownloadActive)
When in development, set True to download locally files from Server. Set it to false to NOT donwload data. In
this case the developer must check the availability of the files

Parameters
bDownloadActive – True (default) to activate autodownload. False to disactivate

5.5. Python WasdiLib 345

WASDI documentation center

getDownloadActive

wasdi.getDownloadActive()

Get the Download Active Flag

Returns
True if auto download is active, False if it is not active

setUploadActive

wasdi.setUploadActive(bUploadActive)
When in development, set True to upload local files on Server. Set it to false to NOT upload data. In this case
the developer must check the availability of the files

Parameters
bUploadActive – True to activate Auto Upload, False to disactivate auto upload

getUploadActive

wasdi.getUploadActive()

Get the Upload Active Flag

Returns
True if Auto Upload is Active, False if it is NOT Active

setProcId

wasdi.setProcId(sProcID)

Own Proc Id

Parameters
sProcID – self processor identifier

getProcId

wasdi.getProcId()

Get the Own Proc Id

Returns
Own Processor Identifier

setActiveWorkspaceId

wasdi.setActiveWorkspaceId(sActiveWorkspace)
Set the Active Workspace Id

Parameters
sActiveWorkspace – Active Workspace Id

346 Chapter 5. Reference center

WASDI documentation center

getActiveWorkspaceId

wasdi.getActiveWorkspaceId()

Get Active workspace Id

Returns
the WorkspaceId as a String, ‘’ if there is any error

refreshParameters

wasdi.refreshParameters()

Refresh parameters, reading the file again

init

wasdi.init(sConfigFilePath=None)
Init WASDI Library. Call it after setting user, password, path and url or use it with a config file

Parameters
sConfigFilePath – local path of the config file. In None or the file does not exists, WASDI
will ask for login in the console

Returns
True if login was successful, False otherwise

hello

wasdi.hello()

Hello Wasdi to test the connection.

Returns
the hello message as Text

getWorkspaces

wasdi.getWorkspaces()

Get List of user workspaces

Returns
an array of WASDI Workspace JSON Objects.

Each Object is like this {

“ownerUserId”:STRING, “sharedUsers”:[STRING], “workspaceId”:STRING, “workspace-
Name”:STRING

}

5.5. Python WasdiLib 347

WASDI documentation center

createWorkspace

wasdi.createWorkspace(sName=None)
Create a new workspaces and set it as ACTIVE Workspace

Parameters
sName – Name of the workspace to create. Null by default

Returns
Workspace Id as a String if it is a success, None otherwise

deleteWorkspace

wasdi.deleteWorkspace(sWorkspaceId)
Delete a workspace

Parameters
sWorkspaceId – Id of the workspace to delete

Returns
True if workspace could be deleted, False otherwise

getWorkspaceIdByName

wasdi.getWorkspaceIdByName(sName)
Get Id of a Workspace from the name

Parameters
sName – Workspace Name

Returns
the WorkspaceId as a String, ‘’ if there is any error

getWorkspaceOwnerByName

wasdi.getWorkspaceOwnerByName(sName)
Get user Id of the owner of Workspace from the name

Parameters
sName – Name of the workspace

Returns
the userId as a String, ‘’ if there is any error

getWorkspaceOwnerByWsId

wasdi.getWorkspaceOwnerByWsId(sWsId)
Get user Id of the owner of Workspace from the Workspace Id

Parameters
sWsId – Workspace Id

Returns
the userId as a String, ‘’ if there is any error

348 Chapter 5. Reference center

WASDI documentation center

getWorkspaceUrlByWsId

wasdi.getWorkspaceUrlByWsId(sWsId)
Get Base Url of a Workspace from the Workspace Id

Parameters
sWsId – Workspace Id

Returns
the Workspace Base Url as a String, ‘’ if there is any error

openWorkspaceById

wasdi.openWorkspaceById(sWorkspaceId)
Open a workspace by Id

Parameters
sWorkspaceId – Workspace Id

Returns
the WorkspaceId as a String, ‘’ if there is any error

openWorkspace

wasdi.openWorkspace(sWorkspaceName)
Open a workspace

Parameters
sWorkspaceName – Workspace Name

Returns
the WorkspaceId as a String, ‘’ if there is any error

getProductsByWorkspace

wasdi.getProductsByWorkspace(sWorkspaceName)
Get the list of products in a workspace by Name

Parameters
sWorkspaceName – Name of the workspace

Returns
the list is an array of string. Can be empty if there is any error

getProductsByWorkspaceId

wasdi.getProductsByWorkspaceId(sWorkspaceId)
Get the list of products in a workspace by Id

Parameters
sWorkspaceId – Workspace Id

Returns
the list is an array of string. Can be empty if there is any error

5.5. Python WasdiLib 349

WASDI documentation center

getProductsByActiveWorkspace

wasdi.getProductsByActiveWorkspace()

Get the list of products in the active workspace

Returns
the list is an array of string. Can be empty if there is any error

getPath

wasdi.getPath(sFile='')
Get Local File Path. If the file exists and needed the file will be automatically downloaded. Returns the full local
path where to read or write sFile

Param
sFile name of the file

Returns
Local path where to read or write sFile

getFullProductPath

wasdi.getFullProductPath(sProductName)
Get the full local path of a product given the product name. If auto download is true and the code is running
locally, WASDI will download the image and keep the file on the local PC Use the output of this API to get the
full path to open a file

Parameters
sProductName – name of the product to get the path open (WITH the final extension)

Returns
local path of the Product File

getSavePath

wasdi.getSavePath()

Get the local base save path for a product. To save use this path + fileName. Path already include ‘/’ as last char

Returns
local path to use to save files (with ‘/’ as last char)

getProcessStatus

wasdi.getProcessStatus(sProcessId, sDestinationWorkspaceUrl=None)
get the status of a Process

Parameters
• sProcessId – Id of the process to query

• sDestinationWorkspaceUrl – allow to ask for a status of a Process That is not in the
actual Active Node

Returns
the status or ‘ERROR’ if there was any error

350 Chapter 5. Reference center

WASDI documentation center

STATUS are CREATED, RUNNING, STOPPED, DONE, ERROR, WAITING, READY

deleteProduct

wasdi.deleteProduct(sProduct)
Delete a Product from a Workspace NOTE: the method DOES NOT delete the pyshical file on your local Disk
if the app is running in your environment.

Parameters
sProduct – Name of the product to delete (WITH EXTENSION)

Returns
True if the file has been deleted, False if there was any error

mosaic

wasdi.mosaic(asInputFiles, sOutputFile, iNoDataValue=None, iIgnoreInputValue=None, fPixelSizeX=None,
fPixelSizeY=None, bAsynch=False)

Creates a mosaic out of a set of images

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• iNoDataValue – Value to use as noData. Use -1 to ignore

• iIgnoreInputValue – Value to ignore from the input files of the mosaic. Use -1 to
ignore

• fPixelSizeX – double value of the output pixel X resolution

• fPixelSizeY – double value of the output pixel Y resolution

• bAsynch – True to return after the triggering, False to wait the process to finish

Returns
Process ID is asynchronous execution, end status otherwise. An empty string is returned in
case of failure

printStatus

wasdi.printStatus()

Prints status

searchEOImages

wasdi.searchEOImages(sPlatform, sDateFrom=None, sDateTo=None, fULLat=None, fULLon=None,
fLRLat=None, fLRLon=None, sProductType=None, iOrbitNumber=None,
sSensorOperationalMode=None, sCloudCoverage=None, sProvider=None,
oBoundingBox=None, aoParams=None, sFileName=None)

Search EO images

Parameters
• sPlatform – satellite platform:(S1|S2|S3|S5P|VIIRS|L8|ENVI|ERA5)

5.5. Python WasdiLib 351

WASDI documentation center

• sDateFrom – inital date YYYY-MM-DD

• sDateTo – final date YYYY-MM-DD

• fULLat – Latitude of Upper-Left corner

• fULLon – Longitude of Upper-Left corner

• fLRLat – Latitude of Lower-Right corner

• fLRLon – Longitude of Lower-Right corner

• sProductType – type of EO product; Can be null. FOR “S1” -> “SLC”,”GRD”,
“OCN”. FOR “S2” -> “S2MSI1C”,”S2MSI2Ap”,”S2MSI2A”. FOR “VI-
IRS” -> “VIIRS_1d_composite”,”VIIRS_5d_composite”. FOR “L8” ->
“L1T”,”L1G”,”L1GT”,”L1GS”,”L1TP”. For “ENVI” -> “ASA_IM__0P”,
“ASA_WS__0P”

• iOrbitNumber – orbit number

• sSensorOperationalMode – sensor operational mode

• sCloudCoverage – interval of allowed cloud coverage, e.g. “[0 TO 22.5]”

• sProvider – WASDI Data Provider to query (AUTO|LSA|ONDA|CREODIAS|SOBLOO|VIIRS|SENTINEL).
None means default node provider = AUTO.

• oBoundingBox – alternative to the float lat-lon corners: an object expected to have these
attributes: oBoundingBox[“northEast”][“lat”], oBoundingBox[“southWest”][“lng”],
oBoundingBox[“southWest”][“lat”], oBoundingBox[“northEast”][“lng”]

• aoParams – dictionary of search keys to add to the query. The system will add key=value
to the query sent to WASDI. The parameters for each collection can be found on the on
line documentation

• sFileName – name of a specific file to search

Returns
a list of results represented as a Dictionary with many properties. The dictionary has the
“fileName” and “relativeOrbit” properties among the others

setVerbose

wasdi.setVerbose(bVerbose)
Sets verbosity :param boolean bVerbose: False non verbose, True verbose :return:

setParametersDict

wasdi.setParametersDict(aoParams)
Get the full Params Dictionary

Parameters
aoParams – dictionary of Parameters

Returns
a dictionary containing the parameters

352 Chapter 5. Reference center

WASDI documentation center

setUser

wasdi.setUser(sUser)
Sets the WASDI User

Parameters
sUser – WASDI UserID

Returns

setPassword

wasdi.setPassword(sPassword)
Set the WASDI Password

setSessionId

wasdi.setSessionId(sSessionId)
Set the WASDI Session

setParametersFilePath

wasdi.setParametersFilePath(sParamPath)
Set The Parameters JSON File Path

Param
sParamPath Local Path of the parameters file

setBasePath

wasdi.setBasePath(sBasePath)
Set the local Base Path for WASDI

Parameters
sBasePath – local WASDI base Path. If not set, by default WASDI uses [USERHOME].wasdi

getBasePath

wasdi.getBasePath()

Get the local Base Path for WASDI

Returns
local base path for WASDI

5.5. Python WasdiLib 353

WASDI documentation center

setBaseUrl

wasdi.setBaseUrl(sBaseUrl)
Set the WASDI API URL

Parameters
sBaseUrl – WASDI API URL

setProcessPayload

wasdi.setProcessPayload(sProcessId, data)
Saves the Payload of a process

Parameters
• sProcessId – Id of the process

• data – data to write in the payload. Suggestion to use a JSON

Returns
the updated status as a String or ‘’ if there was any problem

setPayload

wasdi.setPayload(data)
Sets the payload of the current running process. The payload is saved only when run on Server. In local mode is
just a print.

Parameters
data – data to save in the payload. Suggestion is to use JSON

return None

getProcessorPayload

wasdi.getProcessorPayload(sProcessObjId, bAsJson=False)
Retrieves the payload

Parameters
• sProcessObjId – a valid processor obj id

• bAsJson – flag to indicate whether the payload is a json object: if True, then a dictionary
is returned

Returns
the processor payload if present, None otherwise

354 Chapter 5. Reference center

WASDI documentation center

getProcessorPayloadAsJson

wasdi.getProcessorPayloadAsJson(sProcessObjId)
Retrieves the payload in json format using getProcessorPayload

Parameters
sProcessObjId – a valid processor obj id

Returns
the processor payload if present as a dictionary, None otherwise

setSubPid

wasdi.setSubPid(sProcessId, iSubPid)
Set the sub pid

Parameters
• sProcessId – Id of the process

• iSubPid – PID of the physical process

Returns
the updated status as a String or ‘’ if there was any problem

saveFile

wasdi.saveFile(sFileName)
Ingest a new file in the Active WASDI Workspace. The method takes a file saved in the workspace root (see
getSaveFilePath) not already added to the WS To work be sure that the file is on the server

Param
Name of the file to add to the workpsace

Returns
Status of the operation

updateProgressPerc

wasdi.updateProgressPerc(iPerc)
Update the actual progress Percentage of the processor

Parameters
iPerc – new Percentage. Use a value between 0 and 100 to set it. The value must be an integer

Returns
updated status of the process or ‘’ if there was any error

5.5. Python WasdiLib 355

WASDI documentation center

updateProcessStatus

wasdi.updateProcessStatus(sProcessId, sStatus, iPerc=-1)
Update the status of a process

Parameters
• sProcessId – Id of the process to update.

• sStatus – Status of the process. Can be CREATED, RUNNING, STOPPED, DONE,
ERROR, WAITING, READY

• iPerc – percentage of complete of the processor. Use -1 to ignore Percentage. Use a
value between 0 and 100 to set it.

Returns
the updated status as a String or ‘’ if there was any problem

updateStatus

wasdi.updateStatus(sStatus, iPerc=-1)
Update the status of the running process

Parameters
• sStatus – new status. Can be CREATED, RUNNING, STOPPED, DONE, ERROR,

WAITING, READY

• iPerc – new Percentage.-1 By default, means no change percentage. Use a value between
0 and 100 to set it.

Returns
the updated status as a String or ‘’ if there was any problem

waitProcess

wasdi.waitProcess(sProcessId, sDestinationWorkspaceUrl=None)
Wait for a process to End

Parameters
sProcessId – Id of the process to wait

Returns
output status of the process

waitProcesses

wasdi.waitProcesses(asProcIdList)
Wait for a list of processes to wait. The list of processes is an array of strings, each with a proc id to wait

Parameters
asProcIdList – list of strings, procId, to wait

Returns
list of strings with the same number of elements in input, with the exit status of the processes

356 Chapter 5. Reference center

WASDI documentation center

_downloadFile

wasdi._downloadFile(sFileName)
Download a file from WASDI

Parameters
sFileName – file to download

Returns
None

wasdiLog

wasdi.wasdiLog(sLogRow)
Write one row of Log

Parameters
sLogRow – text to log

Returns
None

fileExistsOnWasdi

wasdi.fileExistsOnWasdi(sFileName)
checks if a file already exists on WASDI or not

Parameters
sFileName – file name with extension

Returns
True if the file exists, False otherwise

importProductByFileUrl

wasdi.importProductByFileUrl(sFileUrl=None, sName=None, sBoundingBox=None, sProvider=None,
sVolumeName=None, sVolumePath=None)

Imports a product from a Provider in WASDI, starting from the File URL.

Parameters
• sFileUrl – url of the file to import

• sName – Name of the file to import as returned by the Data Provider

• sBoundingBox – declared bounding box of the file to import

• sProvider – WASDI Data Provider to use. Use None for Default

• sVolumeName – if the file is in a Volume, the name of the volume

• sVolumePath – if the file is in a Volume, the path of the file in the volume

Returns
execution status as a STRING. Can be DONE, ERROR, STOPPED.

5.5. Python WasdiLib 357

WASDI documentation center

asynchImportProductByFileUrl

wasdi.asynchImportProductByFileUrl(sFileUrl=None, sName=None, sBoundingBox=None, sProvider=None,
sVolumeName=None, sVolumePath=None)

Asynch Import of a product from a Provider in WASDI, starting from file URL

Parameters
• sFileUrl – url of the file to import as returned by the data provider

• sName – Name of the file to import as returned by the Data Provider

• sBoundingBox – declared bounding box of the file to import

• sProvider – WASDI Data Provider. Use None for default

• sVolumeName – if the file is in a Volume, the name of the volume

• sVolumePath – if the file is in a Volume, the path of the file in the volume

Returns
ProcessId of the Download Operation, “DONE” if the file is imported or “ERROR” if there is
any problem

importProduct

wasdi.importProduct(oProduct, sProvider=None)
Imports a product from a Provider in WASDI starting from the object returned by searchEOImages

Parameters
• oProduct – product dictionary as returned by searchEOImages

• sProvider – WASDI Data Provider. Use None for default

Returns
execution status as a STRING. Can be DONE, ERROR, STOPPED.

asynchImportProduct

wasdi.asynchImportProduct(oProduct, sProvider=None)
Asynch Import a product from a Provider in WASDI starting from the object returned by searchEOImages

Parameters
• oProduct – product dictionary as returned by searchEOImages

• sProvider – WASDI Data Provider. Use None for default

Returns
ProcessId of the Download Operation or “ERROR” if there is any problem

358 Chapter 5. Reference center

WASDI documentation center

importProductList

wasdi.importProductList(aoProducts, sProvider=None)
Imports a list of product from a Provider in WASDI starting from an array of objects returned by searchEOImages

Parameters
• aoProducts – Array of product dictionary as returned by searchEOImages

• sProvider – WASDI Data Provider. Use None for default

Returns
execution status as an array of STRINGs, one for each product in input. Can be CREATED,
DONE, ERROR, STOPPED, WAITING, READY

asynchImportProductList

wasdi.asynchImportProductList(aoProducts, sProvider=None)
Asynch Import a list of product from a Provider in WASDI starting from an array of objects returned by
searchEOImages

Parameters
• aoProducts – Array of product dictionary as returned by searchEOImages

• sProvider – WASDI Data Provider. Use None for default

Returns
array of the ProcessId of the Download Operations. An element can be “ERROR” if there was
any problem

asynchAddFileToWASDI

wasdi.asynchAddFileToWASDI(sFileName, sStyle='')
Triggers the ingestion of File Name in the workspace

Param
sFileName: Name (with extension) of the file to add

Parameters
sStyle – name of a valid WMS style

Returns
Process Id of the ingestion

importAndPreprocess

wasdi.importAndPreprocess(aoImages, sWorkflow, sPreProcSuffix='_proc.tif', sProvider=None)
Imports in WASDI and apply a SNAP Workflow to an array of EO Images as returned by searchEOImages

Parameters
• aoImages – array of images to import as returned by searchEOImages

• sWorkflow – name of the workflow to apply to each imported images

• sProvider – WASDI Data Provider. Use None for default

• sPreProcSuffix – suffix to use for the name of the output of the workflows

5.5. Python WasdiLib 359

WASDI documentation center

Returns

asynchExecuteProcessor

wasdi.asynchExecuteProcessor(sProcessorName, aoParams={})
Legacy: use executeProcessor Executes a WASDI Processor asynchronously. The method try up to three time if
there is any problem.

Parameters
• sProcessorName – WASDI processor name

• aoParams – a dictionary of parameters for the processor

Returns
the Process Id if every thing is ok, ‘’ if there was any problem

executeProcessor

wasdi.executeProcessor(sProcessorName, aoProcessParams)
Executes a WASDI Processor asynchronously. The method try up to three time if there is any problem.

Parameters
• sProcessorName – WASDI processor name

• aoParams – a dictionary of parameters for the processor

Returns
the Process Id if every thing is ok, ‘’ if there was any problem

_uploadFile

wasdi._uploadFile(sFileName)
Uploads a file to WASDI

Parameters
sFileName – name of file inside working directory OR path to file RELATIVE to working
directory

Returns
True if succeded, False otherwise

subset

wasdi.subset(sInputFile, sOutputFile, dLatN , dLonW , dLatS, dLonE)
Creates a Subset of an image:

Parameters
• sInputFile – Input file

• sOutputFile – Output File

• dLatN – Latitude north of the subset

• dLonW – Longitude west of the subset

360 Chapter 5. Reference center

WASDI documentation center

• dLatS – Latitude South of the subset

• dLonE – Longitude Est of the subset

multiSubset

wasdi.multiSubset(sInputFile, asOutputFiles, adLatN , adLonW , adLatS, adLonE, bBigTiff=False)
Creates a Many Subsets from an image. MAX 10 TILES PER CALL

Parameters
• sInputFile – Input file

• sOutputFile – Array of Output File Names

• dLatN – Array of Latitude north of the subset

• dLonW – Array of Longitude west of the subset

• dLatS – Array of Latitude South of the subset

• dLonE – Array of Longitude Est of the subset

executeWorkflow

wasdi.executeWorkflow(asInputFileNames, asOutputFileNames, sWorkflowName, aoTemplateParams=None)
Execute a SNAP Workflow available in WASDI (you can use WASDI to upload your SNAP Graph XML and use
from remote)

Parameters
• asInputFileNames – array of the inputs of the workflow. Must correspond to the number

of inputs of the workflow.

• asOutputFileNames – array of the outputs of the workflow. Must correspond to the
number of inputs of the workflow.

• sWorkflowName – Name of the workflow to run

• aoTemplateParams – Dictionary with strings KEY-VALUE that will be used to fill po-
tential parameters in the Workflow XML. Wasdi will search the XML for the strings in
the keys and replace with the value here provided

Returns
final status of the executed Workflow

asynchExecuteWorkflow

wasdi.asynchExecuteWorkflow(asInputFileNames, asOutputFileNames, sWorkflowName,
aoTemplateParams=None)

Trigger the asynch execution of a SNAP Workflow available in WASDI (you can use WASDI to upload your
SNAP Graph XML and use from remote)

Parameters
• asInputFileNames – array of the inputs of the workflow. Must correspond to the number

of inputs of the workflow.

• asOutputFileNames – array of the outputs of the workflow. Must correspond to the
number of inputs of the workflow.

5.5. Python WasdiLib 361

WASDI documentation center

• sWorkflowName – Name of the workflow to run

• aoTemplateParams – Dictionary with strings KEY-VALUE that will be used to fill po-
tential parameters in the Workflow XML. Wasdi will search the XML for the strings in
the keys and replace with the value here provided

Returns
Process Id of the started workflow

asynchMosaic

wasdi.asynchMosaic(asInputFiles, sOutputFile, iNoDataValue=None, iIgnoreInputValue=None,
fPixelSizeX=None, fPixelSizeY=None)

Start a mosaic out of a set of images in asynch way

Parameters
• asInputFiles – List of input files to mosaic

• sOutputFile – Name of the mosaic output file

• iNoDataValue – Value to use as noData. Use -1 to ignore

• iIgnoreInputValue – Value to ignore from the input files of the mosaic. Use -1 to
ignore

• fPixelSizeX – double value of the output pixel X resolution

• fPixelSizeY – double value of the output pixel Y resolution

Returns
Process ID is asynchronous execution, end status otherwise. An empty string is returned in
case of failure

copyFileToSftp

wasdi.copyFileToSftp(sFileName, bAsynch=None, sRelativePath=None)
Copy a file from a workspace to the WASDI user’s SFTP Folder

Parameters
• sFileName – FIle name (with extension, without path) to copy in the SFTP folder

• bAsynch – True to return after the triggering, False to wait the process to finish

Returns
Process ID is asynchronous execution, end status otherwise. An empty string is returned in
case of failure

362 Chapter 5. Reference center

WASDI documentation center

_log

wasdi._log(sLog)
Internal Log function

Parameters
sLog – text row to log

_getStandardHeaders

wasdi._getStandardHeaders()

Get the standard headers for a WASDI API Call, setting also the session token

Returns
dictionary of headers to add to the REST API

_loadConfig

wasdi._loadConfig(sConfigFilePath)
Loads configuration from given file

Parameters
sConfigFilePath – a string containing a path to the configuration file

_loadParams

wasdi._loadParams()

Loads parameters from file, if specified in configuration file

_unzip

wasdi._unzip(sAttachmentName, sPath)
Unzips a file

Parameters
• sAttachmentName – filename to unzip

• sPath – both the path where the file is and where it must be unzipped

Returns
None

_waitForResume

_normPath

wasdi._normPath(sPath)
Normalizes path by adjusting separator

Parameters
sPath – a path to be normalized

5.5. Python WasdiLib 363

WASDI documentation center

Returns
the normalized path

_internalAddFileToWASDI

_internalExecuteWorkflow

wasdi._internalExecuteWorkflow(asInputFileNames, asOutputFileNames, sWorkflowName, bAsynch=False,
aoTemplateParams=None)

Internal call to execute workflow

Parameters
• asInputFileNames – name of the file in input (string WITH extension) or array of strings

of the files in input (WITH extension)

• asOutputFileNames – name of the file in output (string WITH extension) or array of
strings of the files in output (WITH extension)

• sWorkflowName – name of the SNAP workflow uploaded in WASDI

• bAsynch – true to run asynch, false to run synch

• aoTemplateParams – Dictionary with strings KEY-VALUE that will be used to fill po-
tential parameters in the Workflow XML. Wasdi will search the XML for the strings in
the keys and replace with the value here provided

Returns
processID if asynch, status of the executed process if synch, empty string in case of failure

_fileOnNode

wasdi._fileOnNode(sFileName)
checks if a file already exists on the node of the workspace or not

Parameters
sFileName – file name with extension

Returns
True if the file exists, False otherwise

_getDefaultCRS

5.5.3 Changelog

5.6 Javascript WasdiLib

5.6.1 Methods

loadConfig

364 Chapter 5. Reference center

WASDI documentation center

loadConfig(configFile, parametersFile)
Loads configuration and parameters. If no filename is specified, the method attempts to load config.json and
parameters.json files from the root level URL of the developed application. The config file can be also hosted on
an external URL.

Arguments
• configFile – a JSON containing all the required information to login to WASDI, please

check repository for a complete example

• parametersFile – a JSON containing the parameters that can be used during the launch
of the application

loadParameters

loadParameters(filename)
Loads a json containing the parameters which are then imported in a dedicated field. If filename is not specified
the methods search for “parameters.json”, as default

Arguments
• filename – the file name of the JSON containing the parameters

login

login(sUserName, sPassword)
Api call for the login to WASDI services. Valid credential must be available.

Arguments
• sUserName – The username, corresponding to the e-mail used during registration

• sPassword – The selected password

checkBaseUrl

checkBaseUrl()

Util methods to check initialization of the current base URL. Can be used to verify the WASDI service on the
selected node.

Returns
boolean – true, if the connection is ok, false instead

helloWasdiWorld

helloWasdiWorld(noOutput)
Test method to check wasdi instance, with a tiny bit of developer’s traditions. Used across this library to check
the connection state.

Arguments
• noOutput – if true, the method doesn’t output the response on the console

5.6. Javascript WasdiLib 365

WASDI documentation center

openWorkspace

openWorkspace(workspaceID)

Open a workspace and set it as active workspace, by using its Id

Arguments
• workspaceID – The id of the selected workspace

Returns
Object|number|string|Object|* –

createWorkspace

createWorkspace(wsName)
Create a new workspace for the active user.

Arguments
• wsName – The workspace name, if the name is already used WADI will append a further

numeric identifier (like the OS for new folders)

openWorkspaceById

openWorkspaceById(workspaceID)

Opens a workspace and set it as active workspace. The active workspace is the one used for the following
operations, like launch a processor or execute a workflow.

Arguments
• workspaceID – The id of the selected workspace

Returns
Object|number|string|Object|* –

getWorkspaces

getWorkspaces()

Retrieves the list of Workspace of the current logged user.

getProductsByActiveWorkspace

getProductsByActiveWorkspace()

Retrieve a list of workspace of the current logged user.

366 Chapter 5. Reference center

WASDI documentation center

executeProcessor

executeProcessor(appname, jsonParameters)
Launch a process in the current workspace. Check getDeployed method to obtain a list of the avail-
able processors

Arguments
• appname – a String containing the name of the selected application

• jsonParameters – a JSON containing the parameters for the application,
please check the app on WASDI for a specific reference

getProcessStatus

getProcessStatus(processId)
Retrieves the process status of a process, identified by its processId. The response contains, among
other data, the status and the progress percentage

Arguments
• processId – the string containing the processId selected

Returns
the process Object

setProcessPayload

setProcessPayload(sProcessId, data)
Set the payload of a process, identified by its processId

Arguments
• sProcessId – the processId to add the payload

• data – JSON string containing the payload

getDeployed

getDeployed()

Retrieves a list of applications available on the WASDI marketplace. The response is an array of strings that can
be used to launch the particular application

publishBand

publishBand(fileName, bandName)
Publish a band of the particular product selected. To obtain a list of available bands, a function that retrieves the
product details can be used.

Arguments
• fileName – The product name in the current workspace

• bandName – The band that needs to be published

5.6. Javascript WasdiLib 367

WASDI documentation center

getLayerWMS

getLayerWMS(sProductName, sBand)
Returns an object containing 2 string with WMS parameters: - server e.g. “https://{[}URL{]}/geoserver/ows?”
if using Geoserver - layerId

Arguments
• sProductName – the Product name

• sBand – The band required

5.7 Create a config.json file

For developing with WASDI in python, you need to create a config.json file.

Note: The configuration file contains your credentials and some additional information to get WASDI started: never
share it with others! It is required only for developing on your PC, so do not upload it to WASDI when deploying or
updating an application

5.7.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.7.2 Recipe

The basic config.json file must contain:

• your username, which usually corresponds to the email you used

• your password (only you are supposed to know this)

• the workspace ID (suggested) or the workspace name you intend to work in. The workspace ID can
be obtained looking at the URL in the editor, it’s going to look like this: https://www.wasdi.net/#!
/71805896-654b-468c-8fc5-5d2ad6ba61f3/editor -> in this case, 71805896-654b-468c-8fc5-5d2ad6ba61f3 is
the string you are looking for

• path to the parameters file. Again, this is another JSON file used just for development purposes. Assuming it is
called params.json, and that you saved it in the top folder with you your myProcessor.py and config.json files,
the value would be “./params.json”

{
"USER": "yourusername@goes.here",
"PASSWORD": "your secret password goes here",
"WORKSPACEID": "71805896-654b-468c-8fc5-5d2ad6ba61f3",
"PARAMETERSFILEPATH": "./params.json"

}

368 Chapter 5. Reference center

https://{[}URL{]}/geoserver/ows
https://www.wasdi.net/#!/71805896-654b-468c-8fc5-5d2ad6ba61f3/editor
https://www.wasdi.net/#!/71805896-654b-468c-8fc5-5d2ad6ba61f3/editor

WASDI documentation center

Note: Quick, wasn’t it? Try, and reach out if you need help.

5.8 Python Application Skeleton

The following code is the basic structure of a Python Application.

5.8.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.8.2 Recipe

This is the basic structure of a WASDI Application.

Note: The main file MUST be called myProcessor.py. You can then add all the libraries, files and module you may
want to code or include

import wasdi

def run():
wasdi.wasdiLog("Here I can start to code")

if __name__ == '__main__':
wasdi.init("./config.json")
run()

What it does:

• import the library

• handle __main__ in the file

• define a run() method

• initialize the lib

• call the run() method

Note: This structure is mandatory if you plan to deploy your application in WASDI. To use the library only as a client,
this is not necessary.

5.8. Python Application Skeleton 369

https://discord.gg/JYuNhPaZbE

WASDI documentation center

5.9 Read Parameters

The following code is the snippet to read parameters in WASDI.

5.9.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

• A valid params.json file

If this is not clear, you probably need to take a look at the Python Tutorial before.

5.9.2 Recipe

Note: Assume we have a params.json file (configured in config.json)

This is our sample params.json file.

{
"STRING_PARAM": "SAMPLE",
"INT_PARAM": 2,
"BBOX": {
"northEast": {

"lat": 20.1,
"lng": -71.4
},

"southWest": {
"lat": 17.9,
"lng": -74.9
}

},
"DATE": "2024-01-01"

}

This is the code used to read Parameters.

Read the String Parameter
sStringParameter = wasdi.getParameter("STRING_PARAM")
Read the String Parameter, with a Default value if the param is missing in the params.
→˓json file
sStringParameterWithDefault = wasdi.getParameter("STRING_PARAM", "My Default")
Read the Area of Interest
oBbox = wasdi.getParameter("BBOX", None)
Read the integer value without any default
iIntegerValue = wasdi.getParameter("INT_PARAM")
Read the string-formatted Date

(continues on next page)

370 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

(continued from previous page)

sDateString = wasdi.getParameter("DATE")

#This method return a Key-Value Dictionary with all your parameters
aoAllParametersDictionary = wasdi.getParametersDict()

What it does:

• reads different parameters

• reads the full parameters dictionary at once

Note: The developer can decide whatever is needed in the params.json file. If you decide to use the WASDI User
Interface your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case, you will be responsible to convert your data in your code.

Note: The Boundig Box Format used here is the same one used by the User Interface when renderAsStrings is missing
or false. The Boundig Box fromat when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”.

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”.

5.10 Search Sentinel-1 Images

The following code shows how to search S1 Images.

5.10.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.10. Search Sentinel-1 Images 371

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string
https://wasdi.readthedocs.io/en/latest/PythonCookbook/createConfig.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

5.10.2 Recipe

Note: Assume you have at least one workspace and you have configured it in the config.json file.

These are different samples of Sentinel 1 Search. The mandatory fields to search are:
• Mission Type

• Start Date

• End Date

• Product Type

• Bounding Box

Create the Bounding Box Object: usually you will take if from the parameters
oBBox = wasdi.getParameter("BBOX", None)

If it is null we show here how to initialize manually
if oBBox is None:

oBBox = {"northEast": {}, "southWest": {}}
oBBox["northEast"]["lat"] = 20.1
oBBox["northEast"]["lng"] = 44.4
oBBox["southWest"]["lat"] = 19.3
oBBox["southWest"]["lng"] = 43.2

Set Start Date
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
Set End Date
sEndDate = wasdi.getParameter("END_DATE", "2023-01-31")

Start Search GRD Images
aoProductsFoundArray = wasdi.searchEOImages("S1", sStartDate, sEndDate, sProductType="GRD
→˓", oBoundingBox=oBBox)

The result is an array of Objects. Each Object is a Dictionary.

If we have results
if len(aoProductsFoundArray) > 0:

We just loop on the results and explore some properties
for oFoundImage in aoProductsFoundArray:

This is where to read the relative Orbit
iOrbit = oFoundImage["properties"]["relativeorbitnumber"]
THis is the name of the file
sFileName = oFoundImage["fileName"]
There are many other properties, depending by the Provider and the Mission,␣

→˓that can be explored

Now lets search SLC Images
aoSLCFoundArray = wasdi.searchEOImages("S1", sStartDate, sEndDate, sProductType="SLC",␣
→˓oBoundingBox=oBBox)
wasdi.wasdiLog("Found " + str(len(aoSLCFoundArray)) + " SLC Images")

(continues on next page)

372 Chapter 5. Reference center

WASDI documentation center

(continued from previous page)

For Sentinel 1, we can also filter the Relative Orbit
iRelativeOrbit = 43
aoSLCPerOrbitFoundArray = wasdi.searchEOImages("S1", sStartDate, sEndDate, sProductType=
→˓"SLC", oBoundingBox=oBBox, iOrbitNumber=iRelativeOrbit)
wasdi.wasdiLog("Found " + str(len(aoSLCPerOrbitFoundArray)) + " SLC Images in orbit " +␣
→˓str(iRelativeOrbit))

If we have a String Bounding Box...
sBBox = "20.1,43.2,19.3,44.4"
We can convert it in the object
oBoundingBox = wasdi.bboxStringToObject(sBBox)
Or we can also use directly lat and lon in the search:
aoSLCWithLatLonFound = wasdi.searchEOImages("S1", sStartDate, sEndDate, fULLat=20.1,␣
→˓fULLon=43.2, fLRLat=19.3, fLRLon=44.4, sProductType="SLC")
wasdi.wasdiLog("Found " + str(len(aoSLCWithLatLonFound)) + " SLC Images")

What it does:

• Initializes the input variable needed.

• Starts searching for S1 GRD Images

• Loops over the results and accesses some properties

• Searches for SLC Images

• Searches for SLC Images adding the relative orbit filter

• Searches for GRD Images using the lat lon values and not the Bounding Box Object

Note: The developer can decide what is needed in the params.json file. If you decide to use the WASDI User Interface
your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case you will be responsible to convert your data in your code.

Note: The Bounding Box Format used here is the one used by the User Interface when renderAsStrings is missing or
false. The Bounding Box format when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”.

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”.

5.10. Search Sentinel-1 Images 373

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string

WASDI documentation center

5.11 Search Sentinel-2 Images

The following code shows how to search S2 Images

5.11.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.11.2 Recipe

Note: Assume you have at least one workspace and you configured it in the config.json file

These are different samples of Sentinel 2 Search. The mandatory fields to search are:
• Mission Type

• Start Date

• End Date

• Product Type

• Bounding Box

Create the Bounding Box Object: usually you will take if from the parameters
oBBox = wasdi.getParameter("BBOX", None)

If it is null we show here how to initialize manually
if oBBox is None:

oBBox = {"northEast": {}, "southWest": {}}
oBBox["northEast"]["lat"] = 20.1
oBBox["northEast"]["lng"] = 44.4
oBBox["southWest"]["lat"] = 19.3
oBBox["southWest"]["lng"] = 43.2

Set Start Date
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
Set End Date
sEndDate = wasdi.getParameter("END_DATE", "2023-01-10")

Start Search S2 MSI1C Images (Level 1)
aoProductsFoundArray = wasdi.searchEOImages("S2", sStartDate, sEndDate, sProductType=
→˓"S2MSI1C", oBoundingBox=oBBox)

The result is an array of Objects. Each Object is a Dictionary.

(continues on next page)

374 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/PythonCookbook/createConfig.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

(continued from previous page)

If we have results
if len(aoProductsFoundArray) > 0:

We just loop on the results and log file names
for oFoundImage in aoProductsFoundArray:

THis is the name of the file
sFileName = oFoundImage["fileName"]
wasdi.wasdiLog("Found " + sFileName)
There are many other properties, depending by the Provider and the Mission,␣

→˓that can be explored

Now lets search L2 Images
aoL2FoundArray = wasdi.searchEOImages("S2", sStartDate, sEndDate, sProductType="S2MSI2A",
→˓ oBoundingBox=oBBox)
wasdi.wasdiLog("Found " + str(len(aoL2FoundArray)) + " S2MSI2A Images")

For Sentinel 1, we can also filter on the Cloud Coverage
sCloudCover = "[0 TO 50]"
aoL2CloudCoverFound = wasdi.searchEOImages("S2", sStartDate, sEndDate, sProductType=
→˓"S2MSI2A", oBoundingBox=oBBox, sCloudCoverage=sCloudCover)
wasdi.wasdiLog("Found " + str(len(aoL2CloudCoverFound)) + " S2MSI2A Images with␣
→˓CloudCover = " + sCloudCover)

If we have a String Bounding Box...
sBBox = "20.1,43.2,19.3,44.4"
We can convert it in the object
oBoundingBox = wasdi.bboxStringToObject(sBBox)
Or we can also use directly lat and lon in the search:
aoL2LatLonFound = wasdi.searchEOImages("S2", sStartDate, sEndDate, fULLat=20.1,␣
→˓fULLon=43.2, fLRLat=19.3, fLRLon=44.4, sProductType="S2MSI2A")
wasdi.wasdiLog("Found " + str(len(aoL2LatLonFound)) + " S2MSI2A Images")

What it does:

• Initializes the input variable needed.

• Starts searching S2 L1 Images

• Loop the results and print file names

• Searches L2 Images

• Searches L2 Images; adding the cloud coverage

• Searches L2 Images; using the lat lon values and not the Bounding Box Object

Note: The developer can decide whatever is needed in the params.json file. If you decide to use the WASDI User
Interface your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case you will be responsible fir converting your data in your code.

5.11. Search Sentinel-2 Images 375

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string

WASDI documentation center

Note: The Bounding Box Format used here is the one used by the User Interface when renderAsStrings is missing or
false. The Bounding Box format when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”.

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”.

5.12 Search Sentinel-3 Images

The following code shows how to search S3 Images

5.12.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.12.2 Recipe

Note: Assume you have at least one workspace and you configured it in the config.json file

These are different samples of Sentinel 2 Search. The mandatory fields to search are:
• Mission Type

• Start Date

• End Date

• Product Type

• Bounding Box

Create the Bounding Box Object: usually you will take if from the parameters
oBBox = wasdi.getParameter("BBOX", None)

If it is null we show here how to initialize manually
if oBBox is None:

oBBox = {"northEast": {}, "southWest": {}}
oBBox["northEast"]["lat"] = 20.1
oBBox["northEast"]["lng"] = 44.4
oBBox["southWest"]["lat"] = 19.3
oBBox["southWest"]["lng"] = 43.2

Set Start Date getting the parameter from parameters file, fallbacks to 2023-01-01 if␣
(continues on next page)

376 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/PythonCookbook/createConfig.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

(continued from previous page)

→˓value is not specified
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
Set End Date getting the parameter from parameters file, fallbacks to 2023-01-10 if␣
→˓value is not specified
sEndDate = wasdi.getParameter("END_DATE", "2023-01-10")

Start Search S3 Images using the automatic provider selection
aoProductsFoundArray = wasdi.searchEOImages("S3", sDateFrom=sStartDate, sDateTo=sEndDate,
→˓ sProvider="AUTO",

oBoundingBox=oBBox)

The result is an array of Objects. Each Object is a Dictionary.

Let's see how many products correspond to our query
wasdi.wasdiLog(f'Your query identified {len(aoProductsFoundArray)} products')

If we have results
if len(aoProductsFoundArray) > 0:

as an example, let's print the filename of the first product we found
wasdi.wasdiLog(f'{aoProductsFoundArray[0]["fileName"]}')

What it does:

• Initializes the input variable needed.

• Start searching for Sentinel-3 Images - automatically selecting the provider

• Loops over the results and prints the file names of the files reporting Land Surface Temperature (reference data)

Note: The developer can decide whatever is needed in the params.json file. If you decide to use the WASDI User
Interface your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case you will be responsible for converting your data in your code.

Note: The Bounding Box Format used here is the one used by the User Interface when renderAsStrings is missing or
false. The Bounding Box format when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”.

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”.

5.12. Search Sentinel-3 Images 377

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-slstr/product-types/level-2-lst
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string

WASDI documentation center

5.13 Search Sentinel-5p products

The following code shows how to search Sentinel-5p products in WASDI

5.13.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.13.2 Recipe

Note: Assume you have at least one workspace and you configured it in the config.json file

These are different samples of Sentinel-5p Search. The mandatory fields to search are:
• Mission Type

• Start Date

• End Date

• Product Type

• Bounding Box

Create the Bounding Box Object: usually you will take if from the parameters
oBBox = wasdi.getParameter("BBOX", None)

If it is null we show here how to initialize manually
if oBBox is None:

oBBox = {"northEast": {}, "southWest": {}}
oBBox["northEast"]["lat"] = 20.1
oBBox["northEast"]["lng"] = 44.4
oBBox["southWest"]["lat"] = 19.3
oBBox["southWest"]["lng"] = 43.2

Set Start Date getting the parameter from parameters file, fallbacks to 2023-01-01 if␣
→˓value is not specified
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
Set End Date getting the parameter from parameters file, fallbacks to 2023-01-10 if␣
→˓value is not specified
sEndDate = wasdi.getParameter("END_DATE", "2023-01-10")

product type: Nitrogen Dioxide (NO2)
sProductType = 'L2__NO2___'

Start Search S3 Images using the automatic provider selection
(continues on next page)

378 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/PythonCookbook/createConfig.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

(continued from previous page)

aoProductsFoundArray = wasdi.searchEOImages("S5P", sDateFrom=sStartDate,␣
→˓sDateTo=sEndDate,

sProductType=sProductType,
sProvider="AUTO", oBoundingBox=oBBox)

The result is an array of Objects. Each Object is a Dictionary.

Let's see how many products correspond to our query
wasdi.wasdiLog(f'Your query identified {len(aoProductsFoundArray)} products')

If we have results
if len(aoProductsFoundArray) > 0:

as an example, let's print the filename of the first product we found
wasdi.wasdiLog(f'{aoProductsFoundArray[0]["fileName"]}')

What it does:

• Initialize the input variable needed.

• Start Searching for Sentinel-5p products choosing automatically the provider

• prints the number of results

• as an example, prints the filename of the first product found

Note: The developer can decide whatever is needed in the params.json file. If you will use the WASDI User Interface
your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case you will be responsible to convert your data in your code

Note: The Bounding Box Format Here Used is the one used by the User Interface when renderAsStrings is missing
or false. The Bounding Box format when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”

5.14 Search Copernicus Marine products

The following code shows how to search for Copernicus Marine products in WASDI

5.14. Search Copernicus Marine products 379

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string

WASDI documentation center

5.14.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.14.2 Recipe

Note: Assume you have at least one workspace and you have configured it in the config.json file.

To search for Copernicus Marine products, the following fields are mandatory:
• Collection: this is always going to be ‘CM’

• Start Date

• End Date

• Bounding Box

• product type

Then, it’s also mandatory to provide search parameters specific for Copernicus Marine. CM products are
usually organized with the following hierarchy:

• dataset

• variables

Additional parameters may apply, in particular, the protocol: SUBS usually tend to work in most cases, but there may
be exceptions, so check case by case and don’t hesitate to reach out for support.

Let’s see an example

Create the Bounding Box Object: usually you will read it from the parameters
oBBox = wasdi.getParameter("BBOX", None)

If it is null we show here how to initialize manually
if oBBox is None:

oBBox = {
"northEast": {

"lat": 44.2879447888337,
"lng": 9.5

},
"southWest": {

"lat": 43.5,
"lng": 8.4

}
}

Set Start Date
sStartDate = wasdi.getParameter("START_DATE", "2023-07-01")
Set End Date

(continues on next page)

380 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/PythonCookbook/createConfig.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html
https://discord.gg/JYuNhPaZbE

WASDI documentation center

(continued from previous page)

sEndDate = wasdi.getParameter("END_DATE", "2023-07-31")

sProductType = 'OCEANCOLOUR_MED_BGC_HR_L3_NRT_009_205 - TDS'
aoParams = {

"dataset": "cmems_obs_oc_med_bgc_tur-spm-chl_nrt_l3-hr-mosaic_P1D-m",
"variables": "CHL",
"protocol": "SUBS"

}

aoProductsFoundArray = wasdi.searchEOImages(
sPlatform='CM',
oBoundingBox=oBBox, sDateFrom=sStartDate, sDateTo=sEndDate,
sProvider='AUTO',
sProductType=sProductType, aoParams=aoParams

)

Usually, the result is a list of Dictionaries
In the case of Copernicus Marine, however, the list contain only one element␣
→˓encompassing all the data we required:
wasdi.wasdiLog(f'Your query identified {len(aoProductsFoundArray)} products')

If we have results
if len(aoProductsFoundArray) > 0:

let's see the filename corresponding to the product we found:
wasdi.wasdiLog(f'{aoProductsFoundArray[0]["fileName"]}')

What it does:

• Initializes the input variables

• Searches for the corresponding results

• count the results (should always be 1 for CM)

• access a field in the results

Note: The developer can decide what is needed in the params.json file. If you decide to use the WASDI User Interface
your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case you will be responsible to convert your data in your code.

Note: The Bounding Box Format used here is the one used by the User Interface when renderAsStrings is missing or
false. The Bounding Box format when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”.

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”.

5.14. Search Copernicus Marine products 381

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string

WASDI documentation center

5.15 Search ECOSTRESS products

The following code shows how to search for ECOSTRESS products in WASDI

5.15.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.15.2 Recipe

Note: Assume you have at least one workspace and you have configured it in the config.json file.

To search for ECOSTRESS products, the following fields are mandatory:
• Collection: this is always going to be ‘ECOSTRESS’

• Start Date

• End Date

• Bounding Box

Another additional search parameters, specific for ECOSTRESS products, is mandatory:
• dataset

The other search parameters, that you can optionally specify, are:
• relativeorbitnumber

• parameterName

• dayNightFlag

Note: The search filters: dataset, relativeorbitnumber and dayNightFlag should be added to a dictionary, that you can
then pass to the method wasdi.searchEOImages through the optional parameter aoParams

Let’s see an example of code to search for ECOSTRESS products, by specifying all the available filters.

def get_ecostress_products():
wasdi.wasdiLog("** get_ecostress_products **")

Create the Bounding Box Object: usually you will read it from the parameters
oBBox = wasdi.getParameter("BBOX", None)

If it is null we show here how to initialize manually
if oBBox is None:

(continues on next page)

382 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

(continued from previous page)

oBBox = {
"northEast": {

"lat": 50,
"lng": 50

},
"southWest": {

"lat": 44,
"lng": 44

}
}

sStartDate = wasdi.getParameter("START_DATE", "2018-01-10")
sEndDate = wasdi.getParameter("END_DATE", "2018-12-19")

oParameters = {'dataset': "L1B_RAD",
'relativeorbitnumber': "523",
'parameterName': "L1B_RAD",
'dayNightFlag': 'Day'}

images = wasdi.searchEOImages(
sPlatform='ECOSTRESS',
oBoundingBox=oBBox,
sDateFrom=sStartDate,
sDateTo=sEndDate,
sProvider='AUTO',
aoParams=oParameters)

wasdi.wasdiLog(f"get_ecostress_products: Found {len(images)} images")

let's print name of the first image found
if len(images) > 0:

print(images[0]['id'])

What it does:

• Initializes the input variables

• Searches for the corresponding results

• checks that at least one file is returned

• accesses a field in the results

Note: The developer can decide what is needed in the params.json file. If you decide to use the WASDI User Interface
your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case you will be responsible to convert your data in your code.

Note: The Bounding Box Format used here is the one used by the User Interface when renderAsStrings is missing or

5.15. Search ECOSTRESS products 383

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string

WASDI documentation center

false. The Bounding Box format when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”.

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”.

5.16 Search ERA5 products

The following code shows how to search for ERA5 products in WASDI

5.16.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.16.2 Recipe

Note: Assume you have at least one workspace and you have configured it in the config.json file.

To search for ERA5 products, the following fields are mandatory:
• Collection: this is always going to be ‘ERA5’

• Start Date

• End Date

• Bounding Box

Two additional search parameters, specific for ERA5 products, are also mandatory:
• dataset

• aggregation: this is used to specify how you want your data to be stored into the downloaded products.
“daily” will produce one file per day, while “monthly” will produce one file per each calendar month

The other search parameters that you need to specify will depend from the specific dataset you are interested in. For
ERA5 pressure levels, ERA5 single leels and ERA5 Land, you will need to speficy:

• product type

• variables

• format

Additionally, for ERA5 pressure levels, you need to specify:
• pressure levels.

384 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

Note: The aforementioned search filters: dataset, aggregation, variables, format and pressure levels, should be added
to a dictionary, that you can then pass to the method wasdi.searchEOImages through the optional parameter aoParams

Let’s see an example of code to search for ERA5 pressure levels products, which is the more comprehensive with
respect to search parameters involved:

def get_pressure_levels_products():
wasdi.wasdiLog("** get_pressure_levels_products **")

Create the Bounding Box Object: usually you will read it from the parameters
oBBox = wasdi.getParameter("BBOX", None)

If it is null we show here how to initialize manually
if oBBox is None:

oBBox = {
"northEast": {

"lat": 44.2879447888337,
"lng": 9.5

},
"southWest": {

"lat": 43.5,
"lng": 8.4

}
}

Set Start Date
sStartDate = wasdi.getParameter("START_DATE", "2023-07-01")

Set End Date
sEndDate = wasdi.getParameter("END_DATE", "2023-07-31")

aoParams = {'dataset': "reanalysis-era5-pressure-levels",
"pressureLevels": "1000",
'variables': "RH",
'format': "netcdf",
'aggregation': "daily"}

aoProductsFoundArray = wasdi.searchEOImages(
sPlatform='ERA5',
oBoundingBox=oBBox,
sDateFrom=sStartDate,
sDateTo=sEndDate,
sProvider='AUTO',
sProductType='reanalysis',
aoParams=aoParams)

if len(aoProductsFoundArray) > 0:
let's see the file name corresponding to the product we found:
wasdi.wasdiLog(aoProductsFoundArray[0]["title"])

What it does:

5.16. Search ERA5 products 385

WASDI documentation center

• Initializes the input variables

• Searches for the corresponding results

• checks that at least one file is returned

• accesses a field in the results

Note: The developer can decide what is needed in the params.json file. If you decide to use the WASDI User Interface
your parameters will be generated automatically by WASDI.

Note: With the WASDI User Interface you can use the renderAsStrings flag to ask WASDI to get all your parameters
in String Format. In this case you will be responsible to convert your data in your code.

Note: The Bounding Box Format used here is the one used by the User Interface when renderAsStrings is missing or
false. The Bounding Box format when renderAsStrings: true is “NORTH,WEST,SOUTH,EAST”.

Note: The Date is formatted by the User Interface as “YYYY-MM-DD”.

5.17 Import Images after a Search

The following code shows how to import the results of a search to a workspace.

5.17.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

• A valid params.json file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.17.2 Recipe

Note: We will use Sentinel-1 for this sample but the same code can be used for all the missions and image types.

Note: In the code, you will see different options. Most likely, you will want to choose the one that best fits your needs.

This is our sample params.json file.

386 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/UITutorial.html#render-as-string
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

{
"START_DATE": "2023-01-01",
"END_DATE": "2023-01-01",
"BBOX": {
"northEast": {

"lat": 20.1,
"lng": 44.4
},

"southWest": {
"lat": 19.3,
"lng": 43.2
}

},
"MISSION": "S1",
"PRODUCT_TYPE": "GRD"

}

Read Bounding Box, Start and End Date
oBBox = wasdi.getParameter("BBOX", None)
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
sEndDate = wasdi.getParameter("END_DATE", "2023-01-31")

Read Mission and Product Type
sMission = wasdi.getParameter("MISSION", "S1")
sProductType = wasdi.getParameter("PRODUCT_TYPE", "GRD")

Search Images
aoProductsFoundArray = wasdi.searchEOImages(sMission, sStartDate, sEndDate,␣
→˓sProductType=sProductType, oBoundingBox=oBBox)

OPTION 1: Import a single image and wait for the image to be available
if len(aoProductsFoundArray) > 0:

wasdi.importProduct(aoProductsFoundArray[0])

OPTION 2: Import a single image WITHOUT waiting for it:
if len(aoProductsFoundArray) > 0:

sProcessId = wasdi.asynchImportProduct(aoProductsFoundArray[0])
Here you can do what you want
wasdi.wasdiLog("Started Import of one image, the associated process id is " +␣

→˓sProcessId)
Call this if you need to wait
wasdi.waitProcess(sProcessId)

OPTION 3: Import All Products and wait for the images to be available
wasdi.importProductList(aoProductsFoundArray)

OPTION 4: Import All Products without waiting
sProcessId = wasdi.asynchImportProductList(aoProductsFoundArray)
Here you can do what you want
wasdi.wasdiLog("Started Import of all images, the associated process id is " +␣
→˓sProcessId)
Call this if you need to wait
wasdi.waitProcess(sProcessId)

5.17. Import Images after a Search 387

WASDI documentation center

What it does:

• Reads Input Parameters

• Starts searching for S1 GRD Images

• Imports 1 Product

• Asynchronously imports 1 Product

• Imports All Products

• Asynchronously imports all Products

5.18 Import And Pre-Process

You may need to pre-process your images before being able to work with them. This snippets shows a convenient
method to automatically pre-process all imported images.

5.18.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

• A valid params.json file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.18.2 Recipe

Note: We will use Sentinel-1 GRD and the public LISTSinglePreproc2 workflow for this snippet, but this method can
be used with any mission and any compatible workflow.

Note: The LISTSinglePreproc2 is designed to georeference a Sentinel-1 GRD Image (apply orbit, radiometric cali-
bration, terrain correction. . .)

This is our sample params.json file:

{
"START_DATE": "2023-01-01",
"END_DATE": "2023-01-01",
"BBOX": {
"northEast": {

"lat": 20.1,
"lng": 44.4
},

"southWest": {
(continues on next page)

388 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

(continued from previous page)

"lat": 19.3,
"lng": 43.2
}

},
"MISSION": "S1",
"PRODUCT_TYPE": "GRD",
"WORKFLOW": "LISTSinglePreproc2"

}

Read Bounding Box, Start and End Date
oBBox = wasdi.getParameter("BBOX", None)
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
sEndDate = wasdi.getParameter("END_DATE", "2023-01-31")

Read Mission and Product Type
sMission = wasdi.getParameter("MISSION", "S1")
sProductType = wasdi.getParameter("PRODUCT_TYPE", "GRD")
sWorkflow = wasdi.getParameter("WORKFLOW", "LISTSinglePreproc2")

Search Images
aoProductsFound = wasdi.searchEOImages(sMission, sStartDate, sEndDate,␣
→˓sProductType=sProductType, oBoundingBox=oBBox)

if len(aoImagesToProcess)>0:
Import and pre-process all the images: '_preproc.tif' is the suffix added to the␣

→˓original file name that will be used as output name of the workflow
wasdi.importAndPreprocess(aoProductsFound, sWorkflow, '_preproc.tif')

What it does:

• Reads Input Parameters

• Starts searching for S1 GRD Images

• Imports and runs the workflow on all the images

5.19 Run Snap Workflow

This snippet show how to run SNAP worklows by code

5.19.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

• A valid params.json file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.19. Run Snap Workflow 389

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

5.19.2 Recipe

Note: We will use Sentinel-1 GRD and the public LISTSinglePreproc2 workflow for this snippet, but this method can
be used with any mission and any compatible workflow.

Note: Remember that you can upload in WASDI your own SNAP Workflows. For further explaination take a look
here.

This is our sample params.json file.

{
"START_DATE": "2023-01-01",
"END_DATE": "2023-01-01",
"BBOX": {
"northEast": {

"lat": 20.1,
"lng": 44.4
},

"southWest": {
"lat": 19.3,
"lng": 43.2
}

},
"MISSION": "S1",
"PRODUCT_TYPE": "GRD",
"WORKFLOW": "LISTSinglePreproc2"

}

Read Bounding Box, Start and End Date
oBBox = wasdi.getParameter("BBOX", None)
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
sEndDate = wasdi.getParameter("END_DATE", "2023-01-31")

Read Mission and Product Type
sMission = wasdi.getParameter("MISSION", "S1")
sProductType = wasdi.getParameter("PRODUCT_TYPE", "GRD")

Read the name of the workflow to start
sWorkflow = wasdi.getParameter("WORKFLOW", "LISTSinglePreproc2")

Search Images
aoProductsFound = wasdi.searchEOImages(sMission, sStartDate, sEndDate,␣
→˓sProductType=sProductType, oBoundingBox=oBBox)

if len(aoImagesToProcess)>0:
Import the first image
wasdi.importProduct(aoProductsFound[0])

Get the name of the image
sImageName = aoProductsFound[0]["fileName"]

(continues on next page)

390 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/UserManual/UsingYourWorkspace.html#workflows

WASDI documentation center

(continued from previous page)

In general, workflows can have multiple inputs
asInputImages = [sImageName]

We need to decide the name of the output file: here you may add a more smart code␣
→˓(add a suffix to the original name for example)

sOutputImage = "preprocessed.tif"

In general, workflows can have also multiple outputs
asOutputImages = [sOutputImage]

#OPTION 1: run the workflow and wait for the result
wasdi.executeWorkflow(asInputImages, asOutputImages, sWorkflow)

#ALTERNATIVE OPTION 2: run asynch
sProcessId = wasdi.asynchExecuteWorkflow(asInputImages, asOutputImages, sWorkflow)
Here you are free to do what you want
wasdi.wasdiLog("I started a workflow")
Call this if you need to wait for it to finish
wasdi.waitProcess(sProcessId)

else:
wasdi.wasdiLog("No file to pre-process found")

What it does:

• Reads Input Parameters

• Starts searching for S1 GRD Images

• Runs the workflow waiting for it

• Runs the workflow without waiting for it

5.20 Run Another WASDI Application

This snippet shows how to run another WASDI Application from your code.

5.20.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.20. Run Another WASDI Application 391

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

5.20.2 Recipe

Note: We will use the hellowasdi app, but the same code can be used to call any WASDI Application that you have
access to.

Note: To call an App, you need to understand it. Look to the help section of the app or the Json Parameter sample in
the store. Additionallyy, you can contact the developer (if they have provided a contact email address) to understand
the inputs (and outputs) required.

Read the name we want to pass to the hellowasdi
sName = wasdi.getParameter("NAME", "my Test")

Create the dictionary with the parameters to pass to the application
aoApplicationParameters = { "name": sName }

Run the application: Applications are ALWAYS executed in asynchronous way
sProcessId = wasdi.executeProcessor("hellowasdiworld", aoApplicationParameters)

Here you are free to do what you want
wasdi.wasdiLog("I started an app and I can do what I want")

Call this if you need to wait for it to finish
wasdi.waitProcess(sProcessId)

wasdi.wasdiLog("Here I know the application is finished")

What it does:

• Reads Input Parameters

• Creates the dictionary with the params to pass in input to our application

• Runs the application

• Waits for the application to finish

392 Chapter 5. Reference center

WASDI documentation center

5.21 Save Payload

This snippet demonstrates how to save a payload as additional output of your application. WASDI apps are mainly meant
to create new products that will be added to the workspace. But often you may want to save also other information: the
payload is the solution. Payloads are just a string you can save. Usually, the payload is in JSON format. The user can
view the payload in the WASDI Editor.

5.21.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.21.2 Recipe

Note: We will save a JSON Payload. The payload is really saved only when the app is running in WASDI. When
running locally the payload is not really saved.

Note: It is not mandatory, but is good practice in the payload to also save the inputs received.

Read the input parameters
aoInputParameters = wasdi.getParametersDict()

Declare the payload
aoPayload = {}

Add the inputs as a member of the payload
aoPayload["inputs"] = aoInputParameters

Do your own code here...

Here we add some sample values
aoPayload["item_found"] = 3
aoPayload["max_value"] = 1893
aoPayload["selected_color"] = "red"

Save the payload
wasdi.setPayload(aoPayload)

What it does:

• Reads Input Parameters

• Adds some elements to the payload

• Saves the payload

5.21. Save Payload 393

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

5.22 Get list of S2 tiles in an area of interest

The following code shows how to list the different S2 tiles that intersects the area of interest

5.22.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.22.2 Recipe

Note: Assume you have at least one workspace and you configured it in the config.json file

This snippet is meant to get a list of unique S2 Tiles as a result of a search. For more info about the search of S2 please
see Search Sentinel-2 Images .

Read the Bounding Box Object: usually you will take if from the parameters
oBBox = wasdi.getParameter("BBOX", None)
Set Start Date
sStartDate = wasdi.getParameter("START_DATE", "2023-01-01")
Set End Date
sEndDate = wasdi.getParameter("END_DATE", "2023-01-10")

Start Search S2 MSI1C Images (Level 1)
aoProductsFoundArray = wasdi.searchEOImages("S2", sStartDate, sEndDate, sProductType=
→˓"S2MSI1C", oBoundingBox=oBBox)

The result is an array of Objects. Each Object is a Dictionary.

Here we will put our list of tiles
asTiles = []
try:
for oS2L2Image in aoProductsFoundArray:

sImage = oS2L2Image["title"]
sTile = sImage.split('_')[5]
if sTile not in asTiles:

asTiles.append(sTile)

except Exception as oE:
wasdi.wasdiLog(f'Error listing the tiles: {type(oE)}: {oE}')
wasdi.updateStatus('ERROR', 0)
return

wasdi.wasdiLog("Involved Tiles " + str(asTiles))

394 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html
https://https://wasdi.readthedocs.io/en/latest/PythonCookbook/SearchS2Images.html

WASDI documentation center

What it does:

• Read Bounding Box and Dates from parameters

• Starts searching S2 L1 Images

• Loop the results and extract unique Tiles

Note: The same snippet can be used also for Level 2 Data.

5.23 Use Library as client

This snippet shows how to use the WASDI Lib as client, to run applications and get results.

5.23.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

5.23.2 Recipe

We are going to init the WASDI Lib, call an application and get back the result

Note: Often WASDI is used to deploy application, but in the same lib can be used also as a Client of WASDI.

Note: In this sample we use hellowasdiworld application that DOES NOT produce any file, so this snippet as it is will
not dowload locally any file. In the real life you will probably use an app that will add some file in the workspace.

Initialize the lib: you must set the right path to your config file
wasdi.init('myconfig.json')

Create a workspace where we will run our application
wasdi.createWorkspace('NAME')

Create the dictionary with the params to pass to the application
aoParams = {}
aoParams['NAME'] = “Test”

Run the application: Applications are ALWAYS executed in asynchronous way
sProcessId = wasdi.executeProcessor("hellowasdiworld", aoParams)

Here you are free to do what you want
(continues on next page)

5.23. Use Library as client 395

https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

(continued from previous page)

wasdi.wasdiLog("I started an app and I can do what I want")

Call this when you need to wait for it to finish
wasdi.waitProcess(sProcessId)

Get the List of Files in Workspace
asFilesProduced = wasdi.getFileByActiveWorkspace()

For all the files produced
for sFile in asFilesProduced
Since you are running out of wasdi, this will take the produced files locally for␣

→˓you
wasdi.getPath(file)

What it does:

• Initializes the lib

• Creates a workspace

• Creates the parameters for the app

• Starts the app

• Waits for it

• Get the files in the workspace

• Get a local copy of all the produced files

5.24 Change HTTP request timeouts

The following code shows how to set a custom HTTP request timeout to the wasdi lib. Specifically, the new value will
affect the HTTP connection timeout and the response timeout. The default value is set to 120 seconds.

5.24.1 Prerequisites

To run this code you need:
• A running Python 3.x Environment

• A valid WASDI Account

• A valid Config file

If this is not clear, you probably need to take a look to the Python Tutorial before.

396 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/PythonCookbook/createConfig.html
https://wasdi.readthedocs.io/en/latest/ProgrammingTutorials/PythonTutorial.html

WASDI documentation center

5.24.2 Recipe

You can change the default value of the HTTP request timeout by calling the method setRequestsTimeout. That method
takes an integer as parameter to represent the timeout value, expressed in seconds.

The following code snippet provides an example of how to set the HTTP request timeout.

wasdi.wasdiLog(f"Default timeout value: {wasdi.geRequestsTimeout()}")

iNewTimeOut = wasdi.getParameter("REQUEST_TIMEOUT", 240)

if iNewTimeOut is not None:
wasdi.setRequestsTimeout(iNewTimeOut)

wasdi.wasdiLog(f"New timeout value: {wasdi.geRequestsTimeout()}")

What it does:
The code first prints the current HTTP request timeout value, got using the method getRequestsTimeout.

Then, it tries to read the new timeout value from the parameters file, looking for a field “REQUEST_TIMEOUT”. If
such a parameter is not present, then it takes 240 as fallback value (for an overview on how to use the parameters file,
have a look at this recipe).

The new value is passed as a parameter to the setRequestsTimeoutValue and the value of the request timeout is printed
again, to verify that it changed accordingly.

5.25 Add a Data Provider to WASDI

5.25.1 Introduction

A Data Provider is an external service that can be used to query and import Data in WASDI. The main business entities
involved in this operation are:

• Platform: this is the type of data. Usually identified as a Satellite Mission. Platorms are for example Sentinel1,
Sentinel2, ENVISat etc. Each Platform, in general, can be found in more data providers.

• Query Executors / catalogue: the Query executor is the WASDI hierarchy used to query the Data Provider Cata-
logue

• Provider Adapters: Objects used by the launcher to download/import files from an external service.

Note: This tutorial assume that you already have the WASDI Project up and running in your environment

5.25. Add a Data Provider to WASDI 397

https://wasdi.readthedocs.io/en/latest/PythonCookbook/ReadParameters.html

WASDI documentation center

5.25.2 Getting Started

To start adding a Data Provider the first thing to check is the Platform’s support. Supported platforms are listed in the
the class:

wasdi.shared.queryexecutors.Platforms

Each platform is represented by a static String that declares the Platform Code.

In case of a new platform, add also the support to:

wasdi.shared.utils.MissionUtils.getPlatformFromSatelliteImageFileName

This method must be able to infer to platform type from the file name.

If the Data Provider support a new Platform, the code must be added in the Platforms class.

5.25.3 Client Filter

The client search page is configured using the JSON config file config/appconfig.json, which contains an array
of “missions” objects. Each mission is a JSON similar to this one:

{
"name": "S1",
"indexname": "platformname",
"indexvalue": "Sentinel-1",
"selected": true,
"filters": [

{
"indexname": "filename",
"indexlabel": "Satellite Platform",
"indexvalues": "S1A_*|S1B_*",

"indexvalue": "S1A_*"
"regex": ".*"

},
{

"indexname": "producttype",
"indexlabel": "Product Type",
"indexvalues": "SLC|GRD|OCN",

"indexvalue": "GRD"
"regex": ".*"

}
]

}

name will be used to create the corresponding tab in the WASDI search section.

Filters can be added to the search form of the data provider. Each filter has an indexname that represents the name of
the filter and a indexvalue will contain the value of filter selected by the user.

indexname- indexvalues is an array used to create a new variable from the client to the server.

indexname:”platformname” is a filter that must be used to set the Platform Code as defined in the Java Platforms
object. Accordingly, the indexvalue for a ceratin platformname will correspond to the code of the Platform in WASDI.

398 Chapter 5. Reference center

WASDI documentation center

You can add as many filters as required/supported by the Data Provider.

WASDI automatically handles the date interval, the bounding box, platformname and, if supplied, the producttype.

Other filters can be added and will have to be supported server side by your own QueryTranslator.

5.25.4 Query Executor, Query Translator and Response Translator

This section is needed to make WASDI search the new Data Provider. WASDI receives always the query as string that
must be translated in for the provider. Results must then be converted to the WASDI format.

When the user wants to donwload a file, QueryExecutor will pass to the ProviderAdapter the link and the file name that
must be imported.

In general, the name is the key element: since WASDI supports automatic data provider selection, the system will search
the highest priority provider adapter that supports that plaform. The Download Operation will use the QueryExecutor
to obtain the url to use for the download from the filename. Since a platform can be supported by many Data Providers,
this method assures to get always the right file, even from different sources.

In the particular situation where a single platform is supported only by One Data Provider, in the name and in the link,
the developer can decide to store more complete informations that may be needed to interoperate with the external API.

To create a new QueryExecutor, add a new package in

wasdi.shared.queryexecutors

Create 3 objects:

• The new QueryExecutor deriving from QueryExecutor

• The new QueryTranslator deriving from QueryTranslator

• The new ResponseTranslator deriving from ResponseTranslator

Query Executor

The QueryExecutor MUST define its own unique code in the variable m_sProvider, inside the constructor. Usually,
it must also instantiate its own QueryTranslator and ResponseTranslator in the constructor.

public QueryExecutorPLANET() {
m_sProvider="PLANET";
this.m_oQueryTranslator = new QueryTranslatorPLANET();
this.m_oResponseTranslator = new ResponseTranslatorPLANET();

}

QueryExecutor must implement:

public int executeCount(String sQuery): receive in input the WASDI query, must return␣
→˓the number of results for the provider
public List<QueryResultViewModel> executeAndRetrieve(PaginatedQuery oQuery, boolean␣
→˓bFullViewModel): receive in input the WASDI query, must return the list of provider's␣
→˓results as a list of QueryResultViewModel.

The boolean parameter bFullViewModel taken as an input by the method executeAndRetrive depends on the type
of search being executed. Indeed, WASDI supports two types of search:

• the paginated search, used by the WASDI Web client and implemented by the REST endpoint /search/query

5.25. Add a Data Provider to WASDI 399

WASDI documentation center

• the not paginated search, returning the whole list of restults at once, which is used by the WASDI librares and
implmented by the REST endpoint /search/querylist.

When the type of search being executed is a not-paginated one, the value of the boolean is set to false, in order to add
only the essential information to the list of QueryResultViewModel objects returned by the method. By contrast, the
boolean is set to true when the search is paginated. In that case, the QueryResultViewModel objects will contain
exhaustive information about each product returned by the search.

In the QueryResultViewModel the most important fields are:

• title : name of the file

• link : url for the direct download of the file

QueryExecutor base class implements:

public String getUriFromProductName(String sProduct, String sProtocol, String␣
→˓sOriginalUrl)

This method is very important for the auto data provider selection: it takes the name of the product returned by any
catalogue that supports that platform, the original url returned by the same catalogue and must return the URI to access
the file for the Provider Adapter. URI is usually an http link but can be a file path or a ftp link or other, depending on
the linked DataProvider that takes the file with that URI in the executeDownloadFile method.

The basic implementantion just performs a query filtering by the exact product name and uses the result to get the
relative URI: it MUST be overridden if this does not work.

There are at least 2 QueryExecutors base classes that can be used other than the abstract one:

QueryExecutorHttpGet

Each Query Exeuctor that uses standard get http calls, should derive from this class and implement the abstracts methods
of QueryTranslator to get Search and Count URL and of Response Translator to convert the return of the search query
in WASDI View Models executeCount steps are:

• Check if the platform is supported

• call QueryTranslator.getCountUrl

• execute std http get call with that url

• call m_oResponseTranslator.getCountResult to get the number of results.

executeAndRetrive steps are:

• Check if the platform is supported

• call QueryTranslator.getSearchUrl

• execute std http get call with that url

• call m_oResponseTranslator.translateBatch to get the number of results.

QueryExecutorOpenSearch

Base class for Providers supporting Open Search.

400 Chapter 5. Reference center

WASDI documentation center

QueryTranslator

QueryTranslator has the goal to convert the WASDI query in a valid provider query. The user must implement 2
methods:

String getCountUrl(String sQuery)
String getSearchUrl(PaginatedQuery oQuery)

The base class contains the parseWasdiClientQuery method.

QueryViewModel oQuery = parseWasdiClientQuery(sQuery);

In its implementation, the WASDI query is parsed and transformed in the corrisponding view model. If the Platform
or the Data Provider have special filters, these must be supported (parsed) there.

It is important to CHECK that parseWasdiClientQuery is able to detect the platformName attribute of
QueryViewModel, since it is mandatory.

ResponseTranslator

The ResponseTranslator must translate the results of the API call made to the data provider into the WASDI format.

public class ResponseTranslatorPLANET extends ResponseTranslator {

@Override
public List<QueryResultViewModel> translateBatch(String sResponse, boolean␣

→˓bFullViewModel) {
return null;

}

@Override
public int getCountResult(String sQueryResult) {

return 0;
}

}

The WASDI format is a list of QueryResultViewModel objects. The basic information contained in those objects is:

• title : name of the file,

• summary : description. Supports a sort of std like: “Date: 2021-12-25T18:25:03.242Z, Instrument: SAR, Mode:
IW, Satellite: S1A, Size: 0.95 GB” but is not mandatory,

• id : provider unique id,

• link : link to download the file,

• footprint : bounding box in WKT,

• provider : provider used to get this information.

The QueryResultViewModel object also contains a field properties, which is a dictionary filled with all the prop-
erties supported by the data provider. It can be seen with the “info” button in the client.

Some commonly used properties, shown in the client, are:

• date : reference date,

• Satellite : platform,

5.25. Add a Data Provider to WASDI 401

WASDI documentation center

• instrument : used instrument,

• sensorMode : sensing mode,

• size : image size as string,

• relativeOrbit: relative orbit of the acquisition.

To add the query executor to WASDI, remember to add it to the factory

wasdi.shared.queryexecutors.QueryExecutorFactory

static {
Utils.debugLog("QueryExecutorFactory");
final Map<String, Supplier<QueryExecutor>> aoMap = new HashMap<>();

aoMap.put("ONDA", QueryExecutorONDA::new);
aoMap.put("SENTINEL", QueryExecutorSENTINEL::new);
aoMap.put("SOBLOO", QueryExecutorSOBLOO::new);
aoMap.put("EODC", QueryExecutorEODC::new);
aoMap.put("CREODIAS", QueryExecutorCREODIAS::new);
aoMap.put("LSA", QueryExecutorLSA::new);
aoMap.put("VIIRS", QueryExecutorVIIRS::new);
aoMap.put("CDS", QueryExecutorCDS::new);
aoMap.put("PROBAV", QueryExecutorPROBAV::new);
aoMap.put("PLANET", QueryExecutorPLANET::new);

s_aoExecutors = Collections.unmodifiableMap(aoMap);

Utils.debugLog("QueryExecutorFactory.static constructor, s_aoExecutors content:
→˓");

for (String sKey : s_aoExecutors.keySet()) {
Utils.debugLog("QueryExecutorFactory.s_aoExecutors key: " + sKey);

}
}

5.25.5 Provider Adapter

The ProviderAdapter has the goal to ingest the file, either being it a downloaded file or a file copy. Each ProviderAdapter
is linked to the relative QueryExecutor using the same DataProviderCode.

WASDI supports automatic DataProvider selection, consequently each ProviderAdapter must be able to get the URI
link of a file from the file name. The ProviderAdapter must also be able to declare its “score” in the ability to fetch a
file: this score will be used by WASDI to select the best DataProvider for the file to be downloaded.

Scores are defined as integers by the enum in

wasdi.dataproviders.DataProviderScores

A higher number means the best possibility to get the file. At the moment values are: FILE_ACCESS(100),
SAME_CLOUD_DOWNLOAD(90), DOWNLOAD(80), SLOW_DOWNLOAD(50), LTA(10);

The typical empty implementation of a ProviderAdapter is:

public class PLANETProviderAdapter extends ProviderAdapter {

(continues on next page)

402 Chapter 5. Reference center

WASDI documentation center

(continued from previous page)

public PLANETProviderAdapter() {
super();
m_sDataProviderCode = "PLANET";

}

public PLANETProviderAdapter(LoggerWrapper logger) {
super(logger);
m_sDataProviderCode = "PLANET";

}

@Override
protected void internalReadConfig() {

}

@Override
public long getDownloadFileSize(String sFileURL) throws Exception {

return 0;
}

@Override
public String executeDownloadFile(String sFileURL, String sDownloadUser, String␣

→˓sDownloadPassword,
String sSaveDirOnServer, ProcessWorkspace oProcessWorkspace, int␣

→˓iMaxRetry) throws Exception {
return null;

}

@Override
public String getFileName(String sFileURL) throws Exception {

return null;
}

@Override
protected int internalGetScoreForFile(String sFileName, String sPlatformType) {

return 0;
}

}

In the constructor, the provider MUST set its own code in m_sDataProviderCode, that must correspond to the code
used by the linked QueryExecutor.

The methods of the class are:

• internalReadConfig can be used to read from WasdiConfig specific configurations.

• getDownloadFileSize receives the file URI and must return the size of the file. It is useful to give progress to
the user.

• executeDownloadFile. It is the main method: it receives the sFileURL OBTAINED BY THE LINKED DATA
PROVIDER, the credentials, the local folder, the process workspace and the max number of retry allowed. Must
return the valid file full path or “” if the download was not possible.

• getFileName extracts the file name from the URL

• internalGetScoreForFile returns the score auto-evaluated by the Provider Adapter to download sFileName

5.25. Add a Data Provider to WASDI 403

WASDI documentation center

of sPlatformType.

The base class has many utility functions ready for many common cases:

• downloadViaHttp: std http download

• getFileSizeViaHttp: request file size to http

• copyStream: copy a stream to another

• localFileCopy: makes a local file copy

• getFileNameViaHttp: extracts name from http call

• isWorkspaceOnSameCloud: state if the workpsace is on the same cloud of the DataProvider (useful for score)

The provider adapter MUST be added to:

wasdi.dataproviders.ProviderAdapterFactory

When executing the download of a file, many methods implemented by the provider adapter will be used by the class

wasdi.operations.Download

Specifically:

• executeOperation relies on the data provider implementation to retrieve the name of the file to download as
well as its size and executing the actual download of the file;

• getBestProviderAdapter implements the scoring mechanism to select the best data provider to downlad a
file,

• doesProviderAdapterFindFile is used to double-check the availability of the file in the data provider, before
executing the actual download.

Configuration

Each Data provider is listed in the dataProviders section of wasdiConfig.json. An example is:

{
"name": "LSA",
"description": "LSA DATA CENTER",
"link": "https://www.collgs.lu/",
"searchListPageSize": "50",
"defaultProtocol": "https://",
"parserConfig": "/tmp/lsaParserConfig.json",
"user": "USER",
"password": "PASSWORD",
"localFilesBasePath": "/mount/data/",
"urlDomain": "https://collgs.lu/repository/",
"connectionTimeout": "",
"readTimeout": "",
"adapterConfig": "",
"cloudProvider": "AdwaisEO",
"supportedPlatforms":["Sentinel-1","Sentinel-2"]

}

• name is the unique code of the data provider

404 Chapter 5. Reference center

WASDI documentation center

• parserConfig and adapterConfig are 2 possible specific config file that can be used by the Data Provider, one
for the QueryExecutor and the other for the Provider Adapter.

• user and password, if present, are the credentials of the Data Provider.

• cloudProvider is the unique code of the cloud where the DataProvider is hosted. Can be used to set the score of
the performance for a specific file download.

• supportedPlatforms is an array if strings. Each String is a valid entry of the Plaforms supported by WASDI:
here is written the list of plaforms that this DataProvider supports.

Since each Platform can be supported by many data providers, among which we can select the best data provider,
WASDI also defines the best catalogue to use to query that specific Platform. This is done in the catalogues section of
wasdiConfig.

"catalogues": [
{

"platform": "Sentinel-1",
"catalogues": ["LSA","CREODIAS","SENTINEL","ONDA","EODC"]

}

In the example, we see that the Platform Sentinel-1 is supported by 6 catalogues (DataProviders) and the priority one
is LSA Data Center.

To enable the new data provider to download products, we also need to add and configure a new queue to the arrays
schedulers, under the JSON field scheduler.

"schedulers": [
{

"name": "DOWNLOAD.PROVIDERNAME",
"maxQueue": "10",
"timeoutMs": "1111111",
"opTypes": "DOWNLOAD",
"opSubType": "PROVIDERNAME",
"enabled": "1"

}

• name is the unique code of the queue, following the pattern DOWN-
LOAD.NAME_OF_THE_DATAPROVIDER.

• maxQueue is the number of elements that can be put in the queue.

• timeOutMS is the default queue timeout, in milliseconds.

• opTypes it is a comma separated list of OperationTypes supported by the queue. In this specific case of adding
a new data provider, the operation supported by the queue should be “DOWNLOAD”.

• opSubType must be a valid subtype of opType. In this case, the field is used to store the name of the data provider
the queue refers to.

• enabled is a flag to enable (“1”) or disable (“0”) the queue.

Welcome to Space, Have fun!

5.25. Add a Data Provider to WASDI 405

WASDI documentation center

5.26 Add Application User Interface controls

5.26.1 Introduction

This tutorial is done to show how to add a new user control to the WASDI Application interface.

All the WASDI Applications takes in input a generic dictionary of parameters. The developer knows the meaning of
the parameter of his own application and can document it with a readme.md file. In the backend of the wasdi app, it is
also possible to create an automatic user interface to show the application in the marketplace. Look the How to create
a User Interface (UI) for more general info about this.

Here we see how to create and add a new control that WASDI App developers will be able to add their own user
interface.

5.26.2 Existing Controls

The concept of User Interface control is very old in the IT history; it is present for sure from the first versions of
Windows and Apple operating systems. The user controls are a component of the user interface where the user can
interact to insert, read or update a specific kind of data.

The most easy and common control is probably a TextBox: a box where the user can insert a text.

Common controls, already supported in WASDI, are for example:

• TextBox: a box to insert strings

• ComboBox: a list of elements that can be hidden. The user can choose one element of the list

• NumericSlider: a slider that let the user insert an integer number

• NumericField: similar to a textbox, but accepts only floating numbers and not generic strings

• DateTimePicker: a control desinged to insert a date

• Checkbox: usually a sort of switch to input a boolean value

Controls more specific for WASDI are:

• SelectArea: a map that let the user insert a bounding box

• SearchEOImage: a mini-search engine for EO Images

• ProductComboBox: a combobox auto populated with the names of a product in a workspace

In this tuturial we will add the ListBox control: a list of elements where the user can choose zero, one or more elements.

Note: This tutorial requires the WASDI Client project already configured in your environment

406 Chapter 5. Reference center

https://wasdi.readthedocs.io/en/latest/UITutorial.html
https://wasdi.readthedocs.io/en/latest/UITutorial.html

WASDI documentation center

5.26.3 WASDI UI definition language

WASDI UI are described by Json Files. Each control has a minimum strucure:

{
"param": "PARAM_NAME",
"type": "textbox",
"label": "Description",
"tooltip": "Quick help",
"required": false

}

• param: name of the param that will be given to the app

• type: type of the control. When we add a new control, we add a new type.

• label: what we show as description of the parameter to the user

• tooltip: a quick help that will be shown when the user will hover the mouse over the control

• required: true if the input of this param is mandatory otherwise false

Every control MUST have these data as minimum. Then, the designer, can decide to add more parameters specific of
his own control.

For example for our ListBox we define:

{
"param": "PARAM_NAME",
"type": "listbox",
"label": "description",
"values": [],
"required": false,
"tooltip":""

}

In respect to the general control, we added our values parameter:

• values: array of strings. Each string will be an element of the list. The user will be able to choose one or more
of these values.

5.26.4 View Element Factory

In the lib/factories folder there is the ViewElementFactory.js file.

This file contains the definition of all the View Elements. Each control is a View Element. This file contains a class
for each control supported. So the first step is to add our class to the ViewElementFactory:

/**
* List Box Control Class
* @constructor
*/
class ListBox extends UIComponent { constructor() {
super();

this.aoElements = [];
this.aoSelected = [];

(continues on next page)

5.26. Add Application User Interface controls 407

WASDI documentation center

(continued from previous page)

/**
* Return the selected product
* @returns {{}}
*/
this.getValue = function () {

return this.aoSelected;
}

/**
* Return the name of the selected product
* @returns {{}}
*/
this.getStringValue = function () {

let sReturn = "";
let iSel = 0;

if (this.aoSelected != undefined) {
if (this.aoSelected != null) {

for (iSel = 0; iSel<this.aoSelected.length; iSel++) {
if (iSel>0) sReturn = sReturn + ";";
sReturn = sReturn + this.aoSelected[iSel];

}
}

}
return sReturn;

}
};

Our class derive from the base UIComponent one.

The class must implement:

• this.getValue = function () { . . . }: here the class must be able to take the input of the user and return it in the
native format (date for dates, number for slider, string for text. . .)

• this.getStringValue = function () { . . . }: here the class must be able to take the input of the user and return it in
a string representation

The two methods are needed beacuse not all the languages can support the input of native parameters so there is the
option to translate all the input of the user in strings. The developer will later convert the strings in the code of the
WASDI app.

The class CAN implement:

• this.isValid = function (asMessage) { . . . }: must return true of false, making a validation of the user input. The
asMessages parameter is an array of strings: if the validation is not ok the control can add here a message that
will be shown to the user.

After the class has been created, we must move in the createViewElement method in the same file.

This method will be called by the Marketplace UI window to initialize the user interface. It receive in input the json
part of the actual control that must be created.

Here there is a cascade of if-else to detect the type of control: we need to add our control:

408 Chapter 5. Reference center

WASDI documentation center

else if (oControl.type === "listbox") {
// List Box
oViewElement = new ListBox();

let iValues = 0;

oViewElement.aoElements = [];
oViewElement.aoSelected = [];

for (; iValues < oControl.values.length; iValues++) {
oViewElement.aoElements.push(oControl.values[iValues]);

}
}

All the default properties (label, type, paramName, required) are set by the function. In our branch of the if we just
need to:

• Create our class

• Read the “extended” properites we defined in our json definition and use it to initialize our class

This step, is obviously strongly dependant by the control we are implementing: here for exaple we red the values list
of string and we save it in elements of our class. We also initialize another array, the one of selected elements, that will
be filled by our directive. . .

5.26.5 Directive

In the directives/wasdiApp folder there are all the Angualar Directive that are the physical implementation of the user
control. Every time you create a new control you will create also a new directive.

Note: When you add your directive you will have to include the js file in the index.html and declare it in app.js module.
If you have it, you will also have to include the .scss file in the style.scss. To build, remember also to add the require of
the js file in the directive.js file.

Each control, or ViewElement, has a corresponding directive. The directive is left up the the developer, it has to
represent the specific type of input you want to add to WASDI. It is supposed to interact view the ViewElement class,
we will see how in short.

For the moment here an example of our ListBox Directive:

The controller:

angular.module('wasdi.wapListBox', [])
.directive('waplistbox', function () {

"use strict";
return{

restrict:"E",
scope :{

optionsDirective:'=options',
//options:'=',
selectedDirective:'=selected'
// * Text binding ('@' or '@?') *
// * One-way binding ('<' or '<?') *

(continues on next page)

5.26. Add Application User Interface controls 409

WASDI documentation center

(continued from previous page)

// * Two-way binding ('=' or '=?') *
// * Function binding ('&' or '&?') *

},

templateUrl:"directives/wasdiApps/wapListBox/wapListBox.html",
link: function(scope, elem, attrs) {

scope.pushOptionInSelectedList = function(sBandInput)
{

if(utilsIsStrNullOrEmpty(sBandInput) == true)␣
→˓return false;

var iNumberOfSelectedBand = scope.
→˓selectedDirective.length;

var bFinded = false;
for(var iIndexBand = 0; iIndexBand <␣

→˓iNumberOfSelectedBand; iIndexBand++)
{

if(scope.selectedDirective[iIndexBand]␣
→˓== sBandInput)

{
scope.selectedDirective.

→˓splice(iIndexBand,1);
bFinded=true;
break;

}
}

if(bFinded == false)
{

scope.selectedDirective.push(sBandInput);
}
return true;

};

scope.isOptionSelected = function(sBandInput)
{

if(utilsIsStrNullOrEmpty(sBandInput) == true)␣
→˓return false;

var bResult=utilsFindObjectInArray(scope.
→˓selectedDirective ,sBandInput);

if(utilsIsObjectNullOrUndefined(bResult) ==␣
→˓true) return false;

if(bResult == -1)
{

return false;
}

return true;
(continues on next page)

410 Chapter 5. Reference center

WASDI documentation center

(continued from previous page)

}
}

};
});

The view:

<div class="waplistbox-directive">
<input type="text" class="form-control" placeholder="Search..." ng-model=

→˓"textFilter">

<div class="list-group" >
<a href="" class="list-group-item" ng-repeat="option in optionsDirective␣

→˓| filter:textFilter track by $index " ng-class="{active: isOptionSelected(option)}" ng-
→˓click="pushOptionInSelectedList(option);">

{{option}}

</div>
</div>

The style:

.waplistbox-directive
{

.list-group
{

overflow-y: auto;
max-height:160px;
min-height: 50px;

border: 1px solid #43516A;
border-top-left-radius: 4px;
border-top-right-radius: 4px;
a
{
//color: $wasdi-blue-logo;
//border-color: $wasdi-blue-logo;
border-color: transparent;

}
a:hover
{
background-color: darkgrey;

}
}

.list-group-item.active, .list-group-item.active:focus, .list-group-item.active:hover {
z-index: 2;
color: #fff;
background-color: #009036;
border-color:white;//#337ab7;

}
}

5.26. Add Application User Interface controls 411

WASDI documentation center

Is out of the scope of this tutorial to go in the details of the Angular code of this directive. Just recap that it suppose to
receve an attribute called options, with the array of strings to display; also an attribute called selected, again an array,
where it will push all the selected elements.

5.26.6 Add your Directive to the User Interface

Now we have all the elements, we need to add our control to the Marketplace Application User Interface page. The file
is in partials/wasdiapplicationui.html. This page just show in a cycle all the controls requested by the developer in
the UI of the app. The page will take care to show or hide the different controls. All we have to do is add in the “TAB
CONTENT” section, our directive:

<!--list box-->
<div class="col-xs-12 col-md-10 col-lg-8 border-bottom py-2"

ng-if="viewElement.type === 'listbox'">
<div class="input-text-label pt-2">{{viewElement.label}}</div>
<waplistbox options="viewElement.aoElements" selected="viewElement.aoSelected"

tooltip="viewElement.tooltip"></waplistbox>
</div>

As you can notice, the directive receive in input the ViewElement instanced with the code we wrote before. So here is
request to us to use our own directive with our own ViewElement Ojbect, to initilize the control and retrive back the
value inserted by the user.

In our case is done in this snippet:

<waplistbox options=”viewElement.aoElements” selected=”viewElement.aoSelected”
Where we put as options of the directive the elements we got from the JSON and we ask to save the output in aoSelected,
that will be used by our ListBox class in the getValue method.

5.26.7 Add a button to the online editor

To help our developers, there is a very basic on line editor of the UI. There every control has a button that the Developer
can click to see a mockup of the json required to define that control.

The file is a dialog and can be found:

dialogs/processor/TabUIProcessor.html
and

dialogs/processor/ProcessorController.js
In the html we just need to add our button:

<div class="addUIElementCommand" ng-click="m_oController.addUIElement('listbox')">List␣
→˓Box</div>

In the JS, is again simple: just add in the addUIElement your pre-defined json sample:

else if (sElementType === "listbox") {
sTextToInsert = '\n\t{\n\t\t"param": "PARAM_NAME",\n\t\t"type": "listbox",\n\t\t

→˓"label": "description",\n\t\t"values": [],\n\t\t"required": false,\n\t\t"tooltip":""\n\
→˓t},';
}

412 Chapter 5. Reference center

WASDI documentation center

That’s it, you created a new User Interface Control for WASDI Applications!!

Welcome to Space, Have fun!

5.26. Add Application User Interface controls 413

WASDI documentation center

414 Chapter 5. Reference center

CHAPTER

SIX

TERMS AND CONDITIONS

Please, before start using WASDI, check our terms and condition.

6.1 EULA

6.1.1 1. Introduction

1.1. WASDI is a cloud service provided by WASDI Sarl (“WASDI”, “we”, or “us”). By using the WASDI platform ser-
vices (“Services”), you agree to be bound by the following Terms of Service and any future modifications (collectively,
the “Terms”).

1.2. Please read these Terms carefully: This end user agreement represents a legal between (a) you (either an indi-
vidual or single entity) and (b) use (WASDI) that governs the use of our Services. If you use the Services, you agreed
to these Terms.

6.1.2 2. Signing Up

2.1. You must register for a WASDI account to use the Services. You are responsible for all use of the Services
under your account, whether or not authorized. At our discretion, we may make limited exceptions to this policy for
unauthorized use of your account if you notify us of the problem in a timely manner.

2.2. If you are entering into this agreement on behalf of your company or another legal entity, you represent that you
have the authority to bind that entity to these Terms.

6.1.3 3. Our Services

3.1. WASDI Services are available to you in accordance with these Terms. We grant you a non-exclusive, revocable
license and right to: a. Use the Services within 3rd party applications; and b. Use the Services to develop your own
WASDI applications; c. Use the Services with a Machine-to-Machine connection with third party systems;

3.2. Within the trial period and within non-commercial plans you may only use services for non-commercial pur-
poses and for research. With paid subscription plans, you may use services for both commercial and non-commercial
purposes.

415

WASDI documentation center

6.1.4 4. Using WASDI Subscriptions

4.1. Starting from 18 MAY 2023 WASDI has implemented a subscription-based agreement for using WASDI services.
From 18 MAY 2023 onwards, when a user creates a new WASDI account they will be granted rights to a FREE 3
MONTH (90 DAYS) subscription at the STANDARD LEVEL (for information on subscription levels, see sections
5.2 and 5.3). The subscription begins from the first subscription-only action the user executes and continues for the
specified amount of time calculated in milliseconds (for information on subscription-only actions, see section 4.7).

4.2. Users who have purchased a Standard Subscription understand and acknowledge that their Node is shared and
priority may be granted to Professional Subscription holders at any time in the course of the user’s WASDI actions.

4.3. The User must have an active project and valid subscription in WASDI to perform any subscription-only actions.
When a subscription profile is created, an active project for that subscription is created automatically.

4.4. Subscriptions are shareable between users within an organization, but they are not TRANSFERABLE. If you need
to transfer a long term subscription (1 Month or 1 Year) please contact WASDI directly.

4.5. By purchasing and using a WASDI subscription, you are acknowledging that if you are found to be in violation
of any of WASDI’s terms of service particularly as outlined in section 9, the privileges associated with your subscrip-
tion will be revoked and no refund will be issued. See section 12 for further information on Account Termination or
Suspension.

4.6. If there is a major interruption during the course of a short term subscription (1 Day or 1 Week) the amount of time
the interruption caused will be added to the remaining time of the subscription. For example, if the last two hours of a
1 Day subscription were interrupted, those 2 hours will be added to the time remaining in that specific subscription.

4.7. Subscription-only actions are actions in WASDI that are solely available to holders of VALID subscriptions with
an active project.The first execution of any of these actions will trigger your subscription to begin. These actions are as
follows: a. Executing a Processor in a workspace (an existing workspace or a new one); b. Opening a Jupyter Notebook
in a workspace; c. Importing a product to a workspace; d. Executing a workflow in a workspace WASDI retains the
right to add subscription-only actions to this list at any time.

6.1.5 5. Purchasing WASDI Subscriptions

5.1. After the 3 months of free access, WASDI offers two levels of subscription, STANDARD (STND) and PROFES-
SIONAL (PRO). For information on the differentiation, please visit our pricing page at either our information page or
log into an existing WASDI account and navigate to the Subscriptions Page.

5.2. Short Term and STANDARD (STND) Subscriptions are purchased through our payment partner, STRIPE. When
the user completes a payment through Stripe, they are not only agreeing to act in compliance with WASDI’s terms of
service, but also that of Stripe.

5.3. PROFESSIONAL (PRO) Subscriptions are only available through contacting WASDI. The clauses pertaining to
refunding (4.6, and 4.7) are not applicable to PROFESSIONAL subscriptions. Users wishing to purchase a PROFES-
SIONAL subscription must contact WASDI directly for pricing and user obligations.

5.4. VAT is calculated at checkout through STRIPE based on the user’s location. The VAT calculation shown on the
WASDI website is based on a Luxembourgish user. If the purchasing user is located elsewhere, you are acknowledging
that your VAT rate may differ. When you complete a transaction on our Payment Partner’s website, you are confirming
that all information, including your location is true and accurate.

5.5. When checking out through our payment partner, you are agreeing to WASDI’s terms of use for subscriptions
which are outlined in SECTION 4.

5.6. STANDARD Subscriptions can be purchased in increments of 1 Day (24 Hours), 1 Week (7 Days), 1 Month (30
Days), or 1 Year (365 days). These times are calculated in milliseconds beginning at the first execution of a subscription-
only action.

416 Chapter 6. Terms and Conditions

https://www.wasdi.cloud/pricing
https://www.wasdi.net/#!/subscriptions

WASDI documentation center

5.7. Short term subscription plans (i.e., 1 Day and 1 Week) will be refundable if they are PAID but unused. An unused
subscription is one where no subscription-only action has been executed. This refund can be claimed within 14 days
of payment. After 14 days, issuing a refund is at the discretion of WASDI.

5.8. Executed and partially complete subscriptions of any kind are not refundable. If you have executed a subscription-
only action you have agreed to waive your right to a refund.

6.1.6 6. Service Hours and Exceptions

6.1. The Service is delivered 24 hours per day, 7 days per week (i.e., 365 days or 8,760 hours per year), to seamlessly
support business operations.

6.2. Planned and announced interruptions may reduce the effective operating time of the Service.

6.3. The following exceptions with respect to the Service Operations apply: a. Planned and agreed interruptions (e.g.,
for maintenance) are not considered as unavailability of the service, since they are not part of the effective operating
time. Maintenance windows or other planned interruptions will be announced with a lead time of at least 3 working
days. b. Outages or interruptions from third party services on which the Service Operations rely are not considered as
unavailability of the service, since these outages are out of the control of WASDI Sarl.

6.4. Additionally, WASDI reserves the right to temporarily suspend the service in whole or in part in case of: a. De-
tected security threats or vulnerability of the Service or individual Service Components; b. Evidence of fraudulent
intent or misuse of the Service or individual Service Components; c. Infringements with respect to third party agree-
ments imposed on the Service or Service Components as well as violations to the present agreement; d. Adversely
affecting other Service Provider services, services of the Service Provider customers or any Service Provider customer
activities; and e. Violations with reference to payment obligations inherent with the Service delivery. f. In the event of
a temporary suspension of the Service, you remain responsible for all fees and charges incurred during the period of
suspension.

6.1.7 7. Service Guarantees

7.1. The Service will be available with a minimum availability of 95%. However, a single service interruption will have
a duration of fewer than 72 hours (weekdays only). Scheduled maintenance downtime is announced with a notification
period of 3 business days. For further information as to what constitutes a Service interruption, see section 6.3.

7.2. If the minimum availability (§7.1) is not provided by the Service Provider, the Service Provider will grant a service
credit in the form of time lost added to the end of any short-term (1 Day or 1 Week Subscription).

7.3. To receive a credit, the Service User must contact the Service Provider within 30 days following the end of the
unavailability via email at the address provided in §7.6 and include the dates and times of unavailability.

7.4. If the Service Provider confirms that the uptime percentage covered by the Service User request is below the
minimum availability (§7.1), the Service Provider will issue the Service User a service credit. The service credit is
added to the end of the Service User’s term for the Service, and cannot be exchanged for, or converted to, monetary
compensation.

7.5. The WASDI Service Level Agreement (SLA) includes the provision of a chat support in a public Discord Channel
from Monday to Friday, from 9:00AM to 7:00PM CET.

7.6. Direct support requests should be sent via e-mail to: info@wasdi.cloud

6.1. EULA 417

mailto:info@wasdi.cloud

WASDI documentation center

6.1.8 8. Technical and Performance

8.1. WASDI runs on different cloud environments. The performance and availability of each WASDI node is regulated
by the SLA of the cloud provider that is hosting the node. WASDI can only guarantee the backup of the history of the
operations done in that node. Users are able to find out in which cloud environment the services are running and access
that cloud provider’s SLA with a link if made available by the provider.

8.2. In case of any accident in a cloud environment, WASDI cannot be considered responsible and will guarantee only
what stated in (§6.1). Regardless, WASDI will contact the cloud provider to get the best possible conditions to repair
the damage. In case of a re-found from the Cloud Provider this will be proportionally distributed to the users impacted
by the incident, in terms of processors that had been started in that node and files that were stored in that node.

6.1.9 9. Unlawful or Unauthorized Uses

9.1. You may not use the Services for any unlawful purpose. Your use of the Services must comply with all local rules
regarding online conduct and acceptable content.

9.2. You may not use the Services in any manner that could damage or overburden the Services or interfere with any
other party’s use of the Services.

9.3. You may not engage in other unacceptable uses of the Services, which include but are not limited to: a. Dissem-
inating material that is abusive, obscene, pornographic, defamatory, harassing, grossly offensive, vulgar, threatening
or malicious; b. Aiding or implementing practices violating basic human rights or civil liberties; c. Disseminating
or storing material that infringes the copyright, trademark, patent, trade secret, or other intellectual property rights of
any person; d. Creating a false identity or otherwise attempting to mislead others as to the identity or origin of any
communication; e. Exporting, re-exporting, or permitting downloading of any content in violation of any export or
import law, regulation, or restriction of the European Union and its agencies or authorities, or without all required ap-
provals, licenses, or exceptions; f. Interfering with or attempting to gain unauthorized access to any computer network;
g. Transmitting viruses, Trojan horses, or any other malicious code or program; or h. Engaging in any other activity
deemed by WASDI to be in conflict with the spirit or intent of these Terms.

6.1.10 10. User-Supplied Applications

10.1. Any user-supplied application remains a full property of the user.

10.2. Limited to the purpose of hosting your content so that we can provide the Services to you, you hereby grant
WASDI a non-exclusive, worldwide, royalty-free, transferable right and license (with the right to sublicence), to host,
copy and back-up your code.

10.3. If you decide to set your application as public, or you share it with other Users, you also grant WASDI a to
non-exclusive, worldwide, royalty-free, transferable right and license (with the right to sublicence), to use, copy, cache,
publish, display, distribute and store such content. This right and license enables WASDI to host and mirror your
content on its distributed platform. You warrant, represent, and agree that you have the right to grant WASDI these
aforementioned rights.

10.4. On termination of your account WASDI will make all reasonable efforts to promptly remove from the site and
cease use of your content; however, you recognize and agree that caching of or references to the content may not be
immediately removed.

418 Chapter 6. Terms and Conditions

WASDI documentation center

6.1.11 11. Third-Party Applications

11.1. WASDI itself hosts and offers the platform to the client (user). Different third-party applications can be found in
the platform. Each application has its own SLA. WASDI is not responsible for the performance and the results of any
of the hosted applications.

11.2. WASDI Sarl, as the other third parties value adders, will release the SLA of its own applications.

11.3. The Intellectual Property of the applications uploaded in WASDI will remain of the user that uploaded the
application. The publisher can choose if the application will be private, shared with other users or public. The publisher
will choose if the application is free or has a cost.

11.4. Other than your content, all content accessible through the Services, including text, graphics, maps, logos, images,
illustrations, software or source code, audio and video, and animations, are all property of WASDI and/or third parties
and are protected by Luxembourgish and international copyright law. You may be held liable for any unauthorized
copying or disclosure of this content. You agree that WASDI’s licensors shall be third-party beneficiaries to these
Terms and that these companies may directly enforce, and may rely upon, any provision of the Terms that confers a
benefit on them or grants rights in their favor.

11.5. All logos and product names appearing on or in connection with the Services are proprietary to WASDI and/or
its licensors and/or suppliers. You may not remove any proprietary notices or product identification labels from the
Services’ software, maps, or other content.

11.6. In case of a third application sold in WASDI, a revenue sharing mechanism is foreseen. The amount of the
application will go to the developer and a percentage to WASDI.

6.1.12 12. Account Termination or Suspension

12.1. Your WASDI account may be terminated by you at any time. However, we do not give pro-rated refunds for
unused time if you cancel during a billing cycle.

20.2. The limited license granted by this agreement terminates automatically, without notice to you, if you breach any
of these Terms.

12.3. Additionally, WASDI may cancel or suspend your account for any reason by providing you with thirty days’
advance notice. Upon cancellation or suspension, your right to use the Services will cease immediately. You may not
have access to data that you had stored on the site after we cancel or suspend your account. You are responsible for
backing up data that you use with the Services. If we cancel your account in its entirety without cause, we will refund
you on a pro-rata basis the amount of your payment corresponding to the portion of your Service remaining right before
we cancelled your account.

6.1.13 13. Changes to Terms of Service

13.1. We reserve the right to modify these Terms at any time by posting the changed terms on the WASDI website.
All changes shall be effective immediately upon posting. Please check these Terms periodically for changes. Your
continued use of the Services after we post any changes constitutes your binding acceptance of the new terms.

13.2. We may change the features and functions of the Services and the terms of the SLA may change over time.

6.1. EULA 419

WASDI documentation center

6.1.14 14. Indemnification

14.1. By using the platform, the user agrees to hold harmless WASDI, its subsidiaries, affiliates, officers, agents,
partners and employees for any claim or demand, including reasonable attorneys’ fees arising out of: i. Your use of
the Services; ii. Your violation of these Terms; iii. Your end users’ use of the Services in or through an application
or service that you provide; iv. Content you or your end users submit, post to, extracts from, or transmit through the
Services.

6.1.15 15. Data Handling and Retention

15.1. The platform keeps a backup of the database which contains the history of all the operations that the user has
done in WASDI.

15.2. The platform does not save any backup copy of the users’ workspaces or of the files contained in the workspaces.

15.3. WASDI offers a “WASDI-ASSURANCE” service that is able to re-create the workspaces in case of an accident.
This service does not include files uploaded directly by the user and all the files that can be derived through elaboration
from files uploaded directly by the user.

15.4. On the free account type, WASDI reserves the right to delete the user workspaces after a reasonable period of 2
months.

15.5. WASDI Sarl keeps the user’s email and the user-supplied name as personal data. The email is the user id and is
used to reconstruct the history of the processes ran by the user, the list of its workspaces, workflows, applications, and
files.

15.6. WASDI reserves the right to notify the user in case of Foreseen Maintenance Downtimes and/or Major Updates
by email. This newsletter is elective, thus the user may choose not to receive it.

15.7. WASDI makes a backup copy of users’ processors and workflows. The backup runs once per day and processors
and workflows are copied on at least one node in a different cloud environment. The result cannot in any way be
guaranteed and WASDI strongly suggests that users create a local backup copy of their own applications and workflows.

6.1.16 16. Disclaimer

16.1. YOU EXPRESSLY AGREE THAT THE USE OF THE SITE IS AT YOUR SOLE RISK. THE SITE AND
ITS SOFTWARE, SERVICES, MAPS, AND OTHER CONTENT, INCLUDING ANY THIRD-PARTY SOFTWARE,
SERVICES, MEDIA, OR OTHER CONTENT MADE AVAILABLE IN CONJUNCTION WITH OR THROUGH
THE SITE, ARE PROVIDED ON AN “AS IS”, “AS AVAILABLE”, “WITH ALL FAULTS” BASIS AND WITHOUT
WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

16.2. TO THE FULLEST EXTENT PERMISSIBLE PURSUANT TO APPLICABLE LAW, WASDI DISCLAIMS
ALL WARRANTIES, STATUTORY, EXPRESS OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NON- INFRINGEMENT OF PRO-
PRIETARY RIGHTS. NO ADVICE OR INFORMATION, WHETHER ORAL OR WRITTEN, OBTAINED BY
YOU FROM WASDI OR THROUGH THE SITE, WILL CREATE ANY WARRANTY NOT EXPRESSLY STATED
HEREIN.

16.3. WASDI DOES NOT WARRANT THAT THE SITE, INCLUDING ANY SOFTWARE, SERVICES, MAPS,
OR CONTENT OFFERED ON OR THROUGH THE SITE OR ANY THIRD-PARTY SITES REFERRED TO ON
OR BY THE SITE WILL BE UNINTERRUPTED, OR FREE OF ERRORS, VIRUSES, OR OTHER HARMFUL
COMPONENTS AND DOES NOT WARRANT THAT ANY OF THE FOREGOING WILL BE CORRECTED.

16.4. WHEN USING THE SERVICES, YOU MAY BE EXPOSED TO USER SUBMISSIONS AND OTHER THIRD-
PARTY CONTENT (“NON-WASDI CONTENT”), AND SOME OF THIS CONTENT MAY BE INACCURATE, OF-
FENSIVE, INDECENT, OR OTHERWISE OBJECTIONABLE. WE DO NOT ENDORSE ANY NON-WASDI CON-
TENT. UNDER NO CIRCUMSTANCES WILL WASDI BE LIABLE FOR OR IN CONNECTION WITH THE NON-

420 Chapter 6. Terms and Conditions

WASDI documentation center

WASDI CONTENT, INCLUDING FOR ANY INACCURACIES, ERRORS, OR OMISSIONS IN ANY NON-WASDI
CONTENT, ANY INTELLECTUAL PROPERTY INFRINGEMENT WITH REGARD TO ANY NON-WASDI CON-
TENT, OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY
NON-WASDI CONTENT.

16.5. WASDI DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE
RESULTS OF THE USE OF THE SITE OR ANY THIRD-PARTY SITES REFERRED TO ON OR BY THE SITE
IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

16.6. YOU UNDERSTAND AND AGREE THAT YOU USE, ACCESS, DOWNLOAD, OR OTHERWISE OBTAIN
SOFTWARE, SERVICES, MAPS, OR CONTENT TO YOUR OWN DISCRETION AND RISK AND THAT YOU
WILL BE SOLELY RESPONSIBLE FOR ANY DAMAGE TO YOUR PROPERTY (INCLUDING YOUR COM-
PUTER SYSTEM) OR LOSS OF DATA THAT RESULTS FROM SUCH DOWNLOAD OR USE.

16.7. CERTAIN JURISDICTIONS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES OR THE EX-
CLUSION OR LIMITATION OF CERTAIN DAMAGES. IF YOU RESIDE IN SUCH A JURISDICTION, SOME
OR ALL OF THE ABOVE DISCLAIMERS, EXCLUSIONS, OR LIMITATIONS MAY NOT APPLY TO YOU, AND
YOU MAY HAVE ADDITIONAL RIGHTS. THE LIMITATIONS OR EXCLUSIONS OF WARRANTIES, REME-
DIES, OR LIABILITY CONTAINED IN THESE TERMS APPLY TO YOU TO THE FULLEST EXTENT SUCH
LIMITATIONS OR EXCLUSIONS ARE PERMITTED UNDER THE LAWS OF THE JURISDICTION IN WHICH
YOU ARE LOCATED.

6.1.17 17. Limitation of Liability

17.1. UNDER NO CIRCUMSTANCES, AND UNDER NO LEGAL THEORY, INCLUDING NEGLIGENCE,
SHALL WASDI OR ITS AFFILIATES, CONTRACTORS, EMPLOYEES, AGENTS, OR THIRD-PARTY PART-
NERS OR SUPPLIERS, BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, CONSEQUENTIAL, OR
EXEMPLARY DAMAGES (INCLUDING LOSS OF PROFITS, DATA, OR USE OR COST OF COVER) ARISING
OUT OF OR RELATING TO THESE TERMS OR THAT RESULT FROM YOUR USE OR THE INABILITY TO
USE THE SITE, INCLUDING SOFTWARE, SERVICES. MAPS, CONTENT, USER SUBMISSIONS, OR ANY
THIRD-PARTY SITES REFERRED TO ON OR BY THE SITE, EVEN IF WASDI OR A WASDI AUTHORIZED
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17.2. IN NO EVENT SHALL THE TOTAL LIABILITY OF WASDI OR ITS AFFILIATES, CONTRACTORS, EM-
PLOYEES, AGENTS, OR THIRD-PARTY PARTNERS, LICENSORS, OR SUPPLIERS TO YOU FOR ALL DAM-
AGES, LOSSES, AND CAUSES OF ACTION ARISING OUT OF OR RELATING TO THESE TERMS OR YOUR
USE OF THE SITE (WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE), WARRANTY, OR OTH-
ERWISE) EXCEED THE GREATER OF ONE HUNDRED EURO (100 EUR) OR FEES PAID OR PAYABLE TO
WASDI IN THE TWELVE MONTHS PERIOD PRIOR TO THE DATE ON WHICH THE DAMAGE OCCURRED.

17.3. THESE LIMITATIONS SHALL ALSO APPLY WITH RESPECT TO DAMAGES INCURRED BY REASON
OF ANY PRODUCTS OR SERVICES SOLD OR PROVIDED ON ANY THIRD-PARTY SITES REFERRED TO
ON OR BY THE SITE OR OTHERWISE BY THIRD PARTIES OTHER THAN WASDI AND RECEIVED BY YOU
THROUGH OR ADVERTISED ON THE SITE OR RECEIVED BY YOU THROUGH ANY THIRD-PARTY SITES.

17.4 YOU AND WASDI AGREE THAT ANY CAUSE OF ACTION ARISING OUT OF THESE TERMS OR RE-
LATED TO WASDI MUST COMMENCE WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION ACCRUES.
OTHERWISE, SUCH CAUSE OF ACTION IS PERMANENTLY BARRED.

6.1. EULA 421

WASDI documentation center

6.2 Privacy policy

6.2.1 What Personal Data We Collect and Why We Collect it

WASDI Sarl (“WASDI”) is committed to preserving the privacy of all users of our platform, attendees of our workshop,
and any other individuals who have entrusted us with their personal data. This privacy policy is constructed in plain
language to help you understand how any of your personally identifiable information is collected, stored, and disclosed
when you engage with us. Before engaging with us in any capacity (e.g., registering your information or submitting
any content to the platform) we ask that you ensure your understanding of this privacy policy as well as our End User
Licensing Agreement (EULA).

In general, when engaging with WASDI, you are under no obligation to submit any personal information, however, your
refusal to do so may limit our ability to provide you with certain services as well as access to the WASDI platform.
WASDI does not collect, use, store, or disclose any personal information without your consent, except as required by
law.

WASDI will identify the purposes for which personal information is collected at or before the time it is collected. If
we seek to use collected personal information for other purposes, we will seek your consent prior to use, unless it is
otherwise permitted or required by law.

If you have any objections to the terms of this Privacy Policy, you should not use our Services or provide us with any
of your personal information, as providing your personal information to us you will be deemed to have consented to
the processing of such data. If you have any hesitations or are unsure about any of the terms we invite you to contact
us with questions at the contact details provided below.

6.2.2 PART A - COLLECTION OF PERSONAL INFORMATION

1. Information You Provide

We collect the personal information that you provide to us, which may include, but is not limited to: basic personal
information, including your name and contact information;

• information about third parties with whom you are sharing content using our Services and information about
your use of our Services;

• analytical information including by not limited to, your login data, browser type and version, time zone settling
and location, browser plug-in and versions, operating system and platform and other technology on the devices
you use to access our website and application;

• information collected in a dispute resolution if applicable;

• any feedback you provide regarding our products and services; and

• geographic and special areas that you monitor

• satellite data sources you use.

422 Chapter 6. Terms and Conditions

WASDI documentation center

2. Automatic Information

• We may collect and store anonymous information (“Automatic Information”) about you as you engage with our
Services. This information may be collected using various technologies including, without limitation, cookies,
Internet tags and navigational data. Automatic Information will not be published or made public through our
Services.

• Some of this information is automatically transmitted to us through your browser, such as the URL that you just
visited, the browser version that your computer uses, the date etc. Cookies are alphanumeric identifiers that are
stored on your device with which you access the Services. These cookies allow us to adjust our Services to meet
your personal browsing preferences. If your browser is not set to allow cookies, you may not have access to all
areas or features of the website.

• You can set your browser to refuse all or some browser cookies, or to alert you when websites set or access
cookies. If you disable or refuse cookies, please note that some parts of our website may become inaccessible or
not function properly.

6.2.3 PART B – USE OF YOUR INFORMATION

To accomplish any of the purposes listed below, we may combine personal information, Automatic Information, and
non-personal information collected through your use of our Services. This information may be used in a variety of
ways including, but not limited to:

• to connect you to members of our team;

• to enforce our Terms;

• to prevent, detect and investigate potentially prohibited or illegal activities, fraud and security breaches;

• to collect data on our Services;

• to improve our Services;

• to contact you for the purpose of marketing, promotional offers, updates and any other purpose set out in our
Privacy Policy and as permitted by the preferences you have indicated;

• to analyze trends, administer the Services, track your website navigation and gather broad demographic informa-
tion;

• personalize your experience while using our Services; and

• to provide you with any additional information you may request.

Except as set forth above, your personal information will not be provided to any other users of our Services. We reserve
the right to use personal information and Automatic Information as set forth in our Terms, if applicable.

6.2.4 PART C - DISCLOSURE OF YOUR INFORMATION

1. To Help with Business Operations

We may disclose your personal information to our representatives, affiliates, suppliers or other third parties with whom
we do business (our “Business Partners”) when it is deemed necessary for our business operations. For example, from
time to time, we may engage companies or individuals for certain services on our behalf including, without limitation,
conducting audits, performing legal services, processing credit card payments, collecting feedback, and providing
customer service. Our Business Partners and any other third-party service providers will only have incidental access
to personal information to the extent required to perform their services. They are prohibited from using your personal
information for any purpose other than assisting with our business operations.

6.2. Privacy policy 423

WASDI documentation center

2. Safety and Security

We may disclose your information as necessary to protect the safety or security of users of our Services, to detect and
prevent fraud or abusive behaviour, or when otherwise required or permitted by law.

3. Legal Requirements

We may disclose your information, if required, to:

• supervisory authorities, tax authorities, police and other regulatory authorities as required by law or in response
to a subpoena, court order, or other legally valid inquiry or order; or

• to either prevent/minimize a criminal offense or to protect a person’s rights and personal and or financial health.

4. Consent

In addition to permissions already granted under this Privacy Policy by you, we may provide, disclose or transfer your
personal information with your consent provided either as a part of the Services or in writing by you otherwise.

6.2.5 PART D - PROTECTING, RETAINING, AND STORING YOUR INFORMATION

1. PROTECTION

In order to help prevent unauthorized access to, maintain data accuracy and ensure the correct use of your information,
we have put in place commercially reasonable and industry accepted physical, electronic and managerial procedures to
safeguard and secure the information we collect through our Services. That said, we cannot guarantee that information
provided to us through our Services will remain private, or that the information you transmit to us over the Internet will
not be intercepted.

2. STORAGE

Your information is currently stored in various servers located in the European Union as well other jurisdictions in which
our Services’ technology platform resides. However, we retain the right to transfer your information to an affiliate or
third party to protect the information or for internal business reasons as we see fit. BY AGREEING TO THIS PRIVACY
POLICY, YOU AGREE AND CONSENT TO US DOING SO WITHOUT YOUR FURTHER CONSENT.

3. IDENTIFICATION

To help prevent unauthorized access to your personal information you are responsible for keeping your username and
password private and confidential. You are solely responsible for preventing the unauthorized use of your ID. If you
suspect that your information has been compromised or that your account has been accessed without your consent,
please immediately contact us at the contact information provided below.

424 Chapter 6. Terms and Conditions

WASDI documentation center

4. RETENTION

We may store your personal information until the agreement which governs your use of the Services is terminated, or as
necessary to comply with our legal obligations, resolve disputes and enforce our agreements. We will use commercially
reasonable efforts to delete your personal information and any other information you may have provided to us in a
reasonable time frame.

5. WITHDRAWAL OF CONSENT

If you wish to cancel your account or revoke your consent for the collection, use or disclosure of your personal infor-
mation at any time, please contact us at the contact information provided below. Your withdrawal of consent is not
retroactive, since we may already have used your personal information for the purposes described herein, it will be
applied on a go-forward basis.

6.2.6 PART E - ELECTRONIC COMMUNICATIONS

Should you submit an inquiry through our Services, or otherwise communicate with us electronically, you consent to
us responding to such inquiries electronically.

In addition, with your consent we may use personal information to contact you with our customer support materials or
with notices about promotions, sales, new features made available, service interruptions (planned and unplanned). If
you would like to opt out of future promotional materials from us, you may indicate this preference by selecting the
unsubscribe instructions at the end of our electronic communications. Please note that if you opt out of messages from
us, we may continue to send you account-related updates so as to continue to support your account.

6.2.7 PART F - ACCESSING AND MODIFYING YOUR PERSONAL AND ACCOUNT
INFORMATION

You can access and modify your personal and account information using the tools provided through our Services. We
will not modify your personal or account information.

At any time, you may request access to or removal of your personal information by contacting us at the contract infor-
mation provided below. We will respond to your request within a reasonable time period, and process it as appropriate
under applicable law. Your request may be subject to a processing fee as allowed under law.

6.2.8 PART G - GDPR COMPLIANCE

As WASDI is headquartered in Luxembourg, if we collect, track, use or process in some other way your personal
information collected from you or through your use of our website, or we transfer that personal information, we will
do so in accordance with this Privacy Policy, our End User Licensing Agreement, and in compliance with applicable
requirements of the General Data Protection Regulation (EU 2016/679) (“GDPR”).

6.2. Privacy policy 425

WASDI documentation center

1. Transfers of Personal Information.

WASDI is a data controller and responsible for your personal information, which WASDI processes and stores in the
European Union. WASDI uses the following safeguards when transferring your personal information to a country that
is not within the EEA:

(a) Only transfer your personal data only to countries that have been deemed to provide an adequate level of protection
for personal information by the European Commission.

(b) Where your personal data is transferred to a country that is not deemed to have an adequate level of protection,
we will ensure that our service providers contractually agree to implement measures that will ensure that your
personal data has the same protection it has in the EU.

2. Opt-in

If you are an EU resident, we may only collect your data using cookies and similar devices, and then track and use your
personal information where you have first consented to that. We will not automatically collect personal information
from you as described above unless you have consented to us doing so. If you consent to our use of cookies and similar
devices, you may at a later date disable them (please see above). Your Legal Rights Under certain circumstances, you
may have rights under the data protection laws in relation to your personal information, including the right to:

• Request access to your personal information.

• Request correction of your personal information.

• Request erasure of your personal information.

• Object to processing of your personal information.

• Request restriction of processing your personal information.

• Request transfer of your personal information.

• Right to withdraw consent.

If you wish to exercise any of these rights, please contact our Privacy Officer to find out more information about what
we may need from you and the time in which we should respond. Data Protection Officer We are required by the GDPR
to have a data protection officer. The person who has that role is our Privacy Officer whose details are set out below.

6.2.9 PART H - CHANGES TO THIS PRIVACY POLICY

We reserve the right to change this Privacy Policy, and any other policies and procedures concerning our practices for
managing personal information, at any time without prior notice to you. If this Privacy Policy is modified, we will post
the most current version to our website (www.wasdi.cloud). At the top of the modified Privacy Policy we will include
the date upon which it was last updated. Any changes that are made to this Privacy Policy will apply to both personal
information that we hold prior to the effective date of the amended Privacy Policy and to any personal information
collected on or after such effective date. Our successors and assigns may collect and use your personal information for
substantially similar purposes as described in this Privacy Policy.

426 Chapter 6. Terms and Conditions

https://www.wasdi.cloud

WASDI documentation center

6.2.10 PART I - HOW TO CONTACT OUR PRIVACY OFFICER

Any questions, comments or concerns relating to this Privacy Policy, and any requests to correct or access personal
information collected during your use of the Services, should be directed to the Privacy Officer at:

WASDI Sarl 100 route de Volmerange L-3593 Dudelange Luxembourg Attention: Privacy Officer Email:
info@wasdi.cloud

Telephone Number: +352 206005 6301

Last Revised: 7 November 2023

6.2. Privacy policy 427

mailto:info@wasdi.cloud

WASDI documentation center

428 Chapter 6. Terms and Conditions

PYTHON MODULE INDEX

w
wasdi, 364

429

WASDI documentation center

430 Python Module Index

INDEX

Symbols
_fileOnNode() (in module wasdi), 364
_getStandardHeaders() (in module wasdi), 363
_internalExecuteWorkflow() (in module wasdi), 364
_loadConfig() (in module wasdi), 363
_loadParams() (in module wasdi), 363
_log() (in module wasdi), 363
_normPath() (in module wasdi), 363
_unzip() (in module wasdi), 363

A
addFileToWASDI() (in module octavewasdilib), 337
AddFileToWASDI(string) (Java method), 258, 274
addFileToWASDI(String) (Java method), 290
AddFileToWASDI(string, string) (Java method),

273
AddParam(string, string) (Java method), 262
addParam(String, String) (Java method), 290
AsynchAddFileToWASDI(string) (Java method), 274
asynchAddFileToWASDI(String) (Java method), 291
AsynchAddFileToWASDI(string, string) (Java

method), 273
AsynchExecuteProcessor(string, Dictionary)

(Java method), 284
asynchExecuteProcessor(String, HashMap) (Java

method), 291
AsynchExecuteProcessor(string, string) (Java

method), 284
asynchExecuteProcessor(String, String) (Java

method), 291
AsynchExecuteWorkflow(List, List, string)

(Java method), 270
asynchExecuteWorkflow(String[], String[],

String) (Java method), 291
AsynchImportProduct(Dictionary) (Java method),

278
AsynchImportProduct(Dictionary, string) (Java

method), 278
AsynchImportProduct(string, string) (Java

method), 280
AsynchImportProduct(string, string, string)

(Java method), 280

AsynchImportProduct(string, string, string,
string) (Java method), 280

AsynchImportProductList(List, List) (Java
method), 281

AsynchImportProductListWithMaps(List) (Java
method), 281

asynchMosaic(List, String) (Java method), 292
asynchMosaic(List, String, String, String)

(Java method), 292
asynchMosaic(List, String, String, String,

List) (Java method), 292
asynchMosaic(List, String, String, String,

List, double, double) (Java method), 292
asynchMosaic(List, String, String, String,

List, double, double, String) (Java
method), 293

asynchMosaic(List, String, String, String,
List, double, double, String,
double, double, double, double,
String, boolean, String, String,
boolean, boolean, String) (Java
method), 293

AsynchPreprocessProductsOnceDownloaded(List,
string, string, List) (Java method), 268

AsynchPreprocessProductsOnceDownloadedWithNames(List,
string, string, List) (Java method), 269

C
checkBaseUrl() (built-in function), 365
checkSession(String) (Java method), 294
CheckSession(string, string) (Java method), 263
CopyFileToSftp(string) (Java method), 288, 289
CopyFileToSftp(string, string) (Java method),

289
copyStream(InputStream, OutputStream) (Java

method), 294
copyStreamAndClose(InputStream,

OutputStream) (Java method), 294
CreateSession(string, string) (Java method),

263
createWorkspace() (built-in function), 366
CreateWorkspace(string) (Java method), 285

431

WASDI documentation center

CreateWorkspace(string, string) (Java method),
285

D
DeleteProduct(string) (Java method), 285
deleteProduct(String) (Java method), 294
DeleteWorkspace(string) (Java method), 286
DownloadFile(string) (Java method), 288
downloadFile(String) (Java method), 295

E
executeProcessor() (built-in function), 367
ExecuteProcessor(string, Dictionary) (Java

method), 284
ExecuteProcessor(string, string) (Java method),

284
executeWorkflow() (in module octavewasdilib), 338
executeWorkflow(String[], String[], String)

(Java method), 295

G
GetActiveWorkspace() (Java method), 259
getActiveWorkspace() (Java method), 295
GetBasePath() (Java method), 261
getBasePath() (Java method), 295
GetBaseUrl() (Java method), 260
getBaseUrl() (Java method), 295
GetDefaultProvider() (Java method), 258
getDeployed() (built-in function), 367
GetDownloadActive() (Java method), 261
getDownloadActive() (Java method), 295
GetFoundProductFootprint(Dictionary) (Java

method), 278
GetFoundProductFootprint(QueryResult) (Java

method), 278
GetFoundProductLink(Dictionary) (Java method),

277
getFoundProductLink(Map) (Java method), 296
GetFoundProductLink(QueryResult) (Java method),

277
GetFoundProductName(Dictionary) (Java method),

277
getFoundProductName(Map) (Java method), 296
GetFoundProductName(QueryResult) (Java method),

277
getFullProductPath() (in module octavewasdilib),

338
getFullProductPath(String) (Java method), 296
GetIsOnServer() (Java method), 260
getIsOnServer() (Java method), 296
getLayerWMS() (built-in function), 368
GetMyProcId() (Java method), 261
getMyProcId() (Java method), 296
GetParam(string) (Java method), 263

getParam(String) (Java method), 297
GetParametersFilePath() (Java method), 263
getParametersFilePath() (Java method), 297
GetParams() (Java method), 262
getParams() (Java method), 297
GetParamsAsJsonString() (Java method), 262
GetPassword() (Java method), 259
getPassword() (Java method), 297
GetPath(string) (Java method), 269
getPath(String) (Java method), 297
GetProcessesByWorkspaceAsListOfJson(int,

Int32, string, string, string) (Java
method), 286, 287

GetProcessesStatus(List) (Java method), 271
GetProcessesStatusAsList(List) (Java method),

271
GetProcessorPath() (Java method), 285
getProcessorPath() (Java method), 298
GetProcessorPayload(string) (Java method), 287
GetProcessorPayloadAsJSON(string) (Java

method), 287
getProcessStatus() (built-in function), 367
getProcessStatus() (in module octavewasdilib), 338
GetProcessStatus(string) (Java method), 270
getProcessStatus(String) (Java method), 297
GetProcessWorkspacesByWorkspaceId(string)

(Java method), 286
GetProductBbox(string) (Java method), 288
GetProductName(Dictionary) (Java method), 267
getProductsByActiveWorkspace() (built-in func-

tion), 366
getProductsByActiveWorkspace() (Java method),

298
getProductsByWorkspace() (in module octavewas-

dilib), 339
GetProductsByWorkspace(string) (Java method),

266
getProductsByWorkspace(String) (Java method),

298
GetProductsByWorkspaceId() (Java method), 267
GetProductsByWorkspaceId(string) (Java method),

266
getSavePath() (in module octavewasdilib), 339
GetSavePath() (Java method), 269
getSavePath() (Java method), 298
GetSessionId() (Java method), 260
getSessionId() (Java method), 298
getStandardHeaders() (Java method), 298
getStreamingHeaders() (Java method), 299
GetUser() (Java method), 258
getUser() (Java method), 299
GetVerbose() (Java method), 262
getVerbose() (Java method), 299
getWorkflows() (in module octavewasdilib), 339

432 Index

WASDI documentation center

GetWorkflows() (Java method), 270
getWorkflows() (Java method), 299
GetWorkspaceBaseUrl() (Java method), 264
getWorkspaceBaseUrl() (Java method), 299
GetWorkspaceIdByName(string) (Java method), 264
getWorkspaceIdByName(String) (Java method), 299
GetWorkspaceNameById(string) (Java method), 265
GetWorkspaceOwnerByName(string) (Java method),

265
getWorkspaceOwnerByName(String) (Java method),

299
GetWorkspaceOwnerByWSId(string) (Java method),

265
getWorkspaceOwnerByWSId(String) (Java method),

300
getWorkspaces() (built-in function), 366
getWorkspaces() (in module octavewasdilib), 339
GetWorkspaces() (Java method), 264
getWorkspaces() (Java method), 300
GetWorkspaceUrlByWsId(string) (Java method),

265

H
Hello() (Java method), 264
helloWasdiWorld() (built-in function), 365
httpGet(String, Map) (Java method), 300
httpPost(String, String, Map) (Java method),

300

I
ImportAndPreprocess(List, string, string)

(Java method), 268
ImportAndPreprocess(List, string, string,

string) (Java method), 268
ImportAndPreprocessWithLinks(List, List,

string, string) (Java method), 267
ImportAndPreprocessWithLinks(List, List,

string, string, string) (Java method),
267

ImportProduct(Dictionary) (Java method), 279
importProduct(Map) (Java method), 301
ImportProduct(QueryResult) (Java method), 279
importProduct(String) (Java method), 301
ImportProduct(string, string) (Java method),

279
importProduct(String, String) (Java method),

301
ImportProduct(string, string, string) (Java

method), 279
ImportProduct(string, string, string,

string) (Java method), 280
ImportProductList(List, List) (Java method),

281

ImportProductListWithMaps(List) (Java method),
281

init() (Java method), 302
Init(string) (Java method), 257
init(String) (Java method), 301
internalAddFileToWASDI(String, Boolean) (Java

method), 302
internalExecuteWorkflow(String[], String[],

String, Boolean) (Java method), 302
InternalGetFullProductPath(string) (Java

method), 269
internalInit() (Java method), 302
InternalInit(string) (Java method), 258
internalMosaic(boolean, List, String) (Java

method), 302
internalMosaic(boolean, List, String,

String, String) (Java method), 303
internalMosaic(boolean, List, String,

String, String, List) (Java method),
303

internalMosaic(boolean, List, String,
String, String, List, double,
double) (Java method), 303

internalMosaic(boolean, List, String,
String, String, List, double,
double, String) (Java method), 304

internalMosaic(boolean, List, String,
String, String, List, double,
double, String, double, double,
double, double, String, boolean,
String, String, boolean, boolean,
String) (Java method), 304

L
loadConfig() (built-in function), 364
loadParameters() (built-in function), 365
log(String) (Java method), 305
login() (built-in function), 365
login(String, String) (Java method), 305

M
m_sUser (Java field), 257
module

wasdi, 363, 364
Mosaic(List, string) (Java method), 274, 275
mosaic(List, String) (Java method), 305
Mosaic(List, string, string, string) (Java

method), 274, 275
mosaic(List, String, String, String) (Java

method), 306
Mosaic(List, string, string, string,

double, double) (Java method), 275,
276

Index 433

WASDI documentation center

mosaic(List, String, String, String, List)
(Java method), 306

mosaic(List, String, String, String, List,
double, double) (Java method), 306

mosaic(List, String, String, String, List,
double, double, String) (Java method),
307

mosaic(List, String, String, String, List,
double, double, String, double,
double, double, double, String,
boolean, String, String, boolean,
boolean, String) (Java method), 307

MultiSubset(string, List, List, List, List,
List) (Java method), 282, 283

MultiSubset(string, List, List, List, List,
List, bool) (Java method), 282, 283

O
openWorkspace() (built-in function), 366
openWorkspace() (in module octavewasdilib), 340
OpenWorkspace(string) (Java method), 266
openWorkspace(String) (Java method), 308
openWorkspaceById() (built-in function), 366
OpenWorkspaceById(string) (Java method), 266

P
PrintStatus() (Java method), 290
publishBand() (built-in function), 367

R
RefreshParameters() (Java method), 273
refreshParameters() (Java method), 308

S
s_oMapper (Java field), 290
SearchEOImages(string, string, string,

Double, Double, Double, Double,
string, int, string, string) (Java
method), 276

searchEOImages(String, String, String,
Double, Double, Double, Double,
String, Integer, String, String)
(Java method), 308

SetActiveWorkspace(string) (Java method), 259
setActiveWorkspace(String) (Java method), 309
SetBasePath(string) (Java method), 261
setBasePath(String) (Java method), 309
SetBaseUrl(string) (Java method), 260
setBaseUrl(String) (Java method), 309
SetDefaultProvider(string) (Java method), 258
SetDownloadActive(bool) (Java method), 261
setDownloadActive(Boolean) (Java method), 309
SetIsOnServer(bool) (Java method), 260

setIsOnServer(Boolean) (Java method), 309
SetMyProcId(string) (Java method), 261
setMyProcId(String) (Java method), 309
SetParametersFilePath(string) (Java method),

263
setParametersFilePath(String) (Java method),

310
SetPassword(string) (Java method), 259
setPassword(String) (Java method), 310
SetPayload(string) (Java method), 273
setProcessPayload() (built-in function), 367
setProcessPayload() (in module octavewasdilib), 340
SetProcessPayload(string, string) (Java

method), 273
setProcessPayload(String, String) (Java

method), 310
SetSessionId(string) (Java method), 260
setSessionId(String) (Java method), 310
SetSubPid(string, int) (Java method), 289
SetUser(string) (Java method), 259
setUser(String) (Java method), 310
SetVerbose(bool) (Java method), 262
setVerbose(Boolean) (Java method), 311
SetWorkspaceBaseUrl(string) (Java method), 264
setWorkspaceBaseUrl(String) (Java method), 311
startWasdi() (in module matlabwasdilib), 313
startWasdi() (in module octavewasdilib), 337
Subset(string, string, double, double,

double, double) (Java method), 282
subset(String, String, double, double,

double, double) (Java method), 311

U
updateProcessStatus() (in module octavewasdilib),

340
UpdateProcessStatus(string, string, int)

(Java method), 272
updateProcessStatus(String, String, int)

(Java method), 311
UpdateProgressPerc(int) (Java method), 272
updateProgressPerc(int) (Java method), 312
UpdateStatus(string) (Java method), 271
updateStatus(String) (Java method), 312
UpdateStatus(string, int) (Java method), 271
updateStatus(String, int) (Java method), 312
UploadFile(string) (Java method), 288
uploadFile(String) (Java method), 312

W
wAddFileToWASDI() (in module matlabwasdilib), 313
wAddParam() (in module matlabwasdilib), 314
waitForResume() (Java method), 313
waitProcess() (in module octavewasdilib), 341
WaitProcess(string) (Java method), 272

434 Index

WASDI documentation center

waitProcess(String) (Java method), 313
WaitProcesses(List) (Java method), 272
wasdi

module, 363, 364
Wasdi (Java class), 257
Wasdi() (Java constructor), 257
wasdiHello() (in module matlabwasdilib), 337
WasdiLib (Java class), 290
WasdiLib() (Java constructor), 290
wasdiLog() (in module matlabwasdilib), 337
WasdiLog(string) (Java method), 285
wAsynchAddFileToWASDI() (in module matlabwas-

dilib), 314
wAsynchCopyFileToSftp() (in module matlabwas-

dilib), 314
wAsynchExecuteProcessor() (in module matlabwas-

dilib), 315
wAsynchExecuteWorkflow() (in module matlabwas-

dilib), 315
wAsynchImportProduct() (in module matlabwasdilib),

315
wAsynchImportProductList() (in module matlabwas-

dilib), 316
wAsynchMosaic() (in module matlabwasdilib), 316
wAsynchMultiSubset() (in module matlabwasdilib),

317
wCopyFileToSftp() (in module matlabwasdilib), 317
wCreateWorkspace() (in module matlabwasdilib), 317
wDeleteProduct() (in module matlabwasdilib), 318
wDeleteWorkspace() (in module matlabwasdilib), 318
wExecuteProcessor() (in module matlabwasdilib), 318
wExecuteWorkflow() (in module matlabwasdilib), 319
wGetActiveWorkspace() (in module matlabwasdilib),

319
wGetBasePath() (in module matlabwasdilib), 319
wGetBaseUrl() (in module matlabwasdilib), 320
wGetDownloadActive() (in module matlabwasdilib),

320
wGetFullProductPath() (in module matlabwasdilib),

320
wGetMyProcId() (in module matlabwasdilib), 320
wGetParameter() (in module matlabwasdilib), 321
wGetParametersFilePath() (in module matlabwas-

dilib), 321
wGetParams() (in module matlabwasdilib), 321
wGetPassword() (in module matlabwasdilib), 321
wGetPath() (in module matlabwasdilib), 322
wGetProcessesByWorkspace() (in module matlabwas-

dilib), 322
wGetProcessorPath() (in module matlabwasdilib), 323
wGetProcessorPayload() (in module matlabwasdilib),

323
wGetProcessorPayloadAsJSON() (in module matlab-

wasdilib), 323

wGetProcessStatus() (in module matlabwasdilib), 322
wGetProductBbox() (in module matlabwasdilib), 323
wGetProductsByActiveWorkspace() (in module mat-

labwasdilib), 324
wGetProductsByWorkspace() (in module matlabwas-

dilib), 324
wGetSavePath() (in module matlabwasdilib), 324
wGetSessionId() (in module matlabwasdilib), 325
wGetUploadActive() (in module matlabwasdilib), 325
wGetUser() (in module matlabwasdilib), 325
wGetVerbose() (in module matlabwasdilib), 325
wGetWorkflows() (in module matlabwasdilib), 326
wGetWorkspaceBaseUrl() (in module matlabwasdilib),

326
wGetWorkspaceIdByName() (in module matlabwas-

dilib), 326
wGetWorkspaceOwnerByName() (in module matlabwas-

dilib), 326
wGetWorkspaces() (in module matlabwasdilib), 327
wGetWorkspaceUrlByWsId() (in module matlabwas-

dilib), 327
wImportAndPreprocess() (in module matlabwasdilib),

327
wImportProduct() (in module matlabwasdilib), 327
wImportProductList() (in module matlabwasdilib),

328
wLog() (in module matlabwasdilib), 328
wMosaic() (in module matlabwasdilib), 328
wMultiSubset() (in module matlabwasdilib), 329
wOpenWorkspace() (in module matlabwasdilib), 329
wOpenWorkspaceById() (in module matlabwasdilib),

329
wPrintStatus() (in module matlabwasdilib), 330
wRefreshParameters() (in module matlabwasdilib),

330
wSearchEOImages() (in module matlabwasdilib), 330
wSetActiveWorkspaceId() (in module matlabwas-

dilib), 331
wSetBasePath() (in module matlabwasdilib), 331
wSetBaseUrl() (in module matlabwasdilib), 331
wSetDownloadActive() (in module matlabwasdilib),

331
wSetIsOnServer() (in module matlabwasdilib), 332
wSetMyProcId() (in module matlabwasdilib), 332
wSetParameter() (in module matlabwasdilib), 332
wSetPassword() (in module matlabwasdilib), 332
wSetPayload() (in module matlabwasdilib), 333
wSetProcessPayload() (in module matlabwasdilib),

333
wSetSessionId() (in module matlabwasdilib), 333
wSetSubPid() (in module matlabwasdilib), 333
wSetUploadActive() (in module matlabwasdilib), 334
wSetUser() (in module matlabwasdilib), 334
wSetVerbose() (in module matlabwasdilib), 334

Index 435

WASDI documentation center

wSetWorkspaceBaseUrl() (in module matlabwasdilib),
334

wSubset() (in module matlabwasdilib), 334
wUpdateProcessStatus() (in module matlabwasdilib),

335
wUpdateProgress() (in module matlabwasdilib), 335
wUpdateProgressPerc() (in module matlabwasdilib),

336
wUpdateStatus() (in module matlabwasdilib), 336
wUrlEncode() (in module matlabwasdilib), 336
wWaitProcess() (in module matlabwasdilib), 336

436 Index

	Getting Started with WASDI
	Wasdi Web Platform access and basic usage
	WASDI Login
	Workspace Management
	Wasdi Sections
	Search
	Editor

	Wasdi Libraries Concepts
	Introduction
	Main Goals
	Main Entities
	Applications Model
	Configuration
	Local File System
	Basic Functionalities
	Advanced Functionalities

	WASDI User Manual
	Signing Up and Signing In
	WASDI Login
	Keycloak Login

	Workspace Management and Use
	The Workspaces Tab
	Interacting With Products
	Publishing and Interacting with Bands
	Reading Metadata
	The Editor Toolbar
	Apps
	New App
	Package Manager
	Workflows
	Import
	Open Jupyter
	Styles
	Share
	The Processes Bar
	The Workspace Processes List
	The Map
	Workspace Details

	Searching for Products
	Managing Subscriptions and Organizations
	Managing Subscriptions
	Purchasing Subscriptions
	Active Projects

	Other
	Accessing Documentation
	Sending Feedback
	Account Management

	WASDI Marketplace
	Wasdi App Store
	Introduction
	Launch an application
	Add a new application

	eDrift Tutorial
	Floods in open areas
	Algorithms to map floods in open areas from Sentinel-1
	Automatic HASARD
	Flood Archive Generator
	Flood Frequency Map Generator
	HASARD On Demand
	Parameters

	Algorithms to map floods in open areas from Sentinel-2
	Automatic AUTOWADE
	AUTOWADE On Demand S2

	Algorithms to map floods in open areas from VIIRS
	VIIRS Flood

	Floods in urban areas
	Algorithms to map floods in urban areas from Sentinel-1
	Urban Flood

	Wheat Locator
	About?
	Input Parameters:
	Credits:

	Add your App to WASDI
	Python Tutorial
	Setup
	Create first files
	First lines
	WASDI Hello World
	Introducing parameters
	A more meaningful example
	Step 1: read and validate parameters
	Step 2: search the catalogs for EO data
	Step 3: import EO images in the workspace
	Step 4: create an 8-bit RGB GeoTIFF out of a Sentinel-2 image
	extractBands
	stretchBandValues

	Step 5: close the WASDI processor
	Creating a help file
	Deploy the processor on WASDI
	Turn the processor into an app on the marketplace
	Processor tab
	Store
	Media
	Share
	UI
	The app store
	Delete your app

	Jupyter Notebook Tutorial
	Prerequisites
	Create and Open Jupyter Lab
	Get started coding

	Python Landsat Tutorial
	Requirements
	Overview
	Setup
	Create first files
	First lines
	Extract Bands
	Compute NDVI
	Main Function

	Search and Import EO Images
	Introduction
	Search EO Images
	Automatic Data Provider
	searchEOImages Output
	Search Sample Code
	Import functionalities
	Import Sample Code
	Search Parameter Documentation
	Sentinel-1 Parameters
	Sentinel-2 Parameters
	Sentinel-3 Parameters
	Sentinel-5P Parameters
	PROBA-V Parameters
	Envisat Parameters
	Landsat8 Parameters
	VIIRS Parameters
	ERA5 Parameters
	CAMS Parameters
	PLANET Parameters
	DEM Parameters
	WorldCover Parameters
	StaticFiles Parameters
	IMERG Parameters
	CM Parameters
	ECOSTRESS Parameters

	Configuration tutorial
	Introduction
	Login parameters
	Workspace initialization
	Parameters dictionary
	Download/Upload activation
	Logs verbosity
	Base path
	Advanced settings
	Complete config.json reference

	Working with Workspaces and Products
	Introduction
	Workspace functionalities
	Workspaces Sample Code
	Products functionalities
	Products Sample Code

	Synchronous and Asynchronous WASDI programming
	Introduction
	WASDI Processes
	Synchronous vs Asynchronous
	Download Sample
	Start Other Applications
	Suggested WASDI App Organization

	C# Tutorial
	Prerequisites
	Setup
	Setup on Wasdi web-app side
	Setup on Microsoft’s Visual Studio side

	Work with WASDI
	Add the WasdiLib dependency to your application
	Create configuration files
	Create appsettings.json
	Create parameters.json

	Verify the setup
	Call the /hello endpoint
	Get the user’s workspaces’ names

	Running the new C# application on Wasdi platform
	Writing the application
	Packaging the application
	Deploying the application
	Viewing the application
	Running the application
	The GitHub repository
	The end

	Site Map
	Login Page
	Logging In

	How to create a User Interface (UI)
	Introduction
	Controls Shared Properties
	Textbox
	Numeric field
	Dropdown
	Select Area
	Number Slider
	Date
	Bool
	Products Combo Box
	Search EO Image
	Hidden Field
	List Box
	Render As String
	Example - Create an actual UI

	Javascript Web Tutorial
	Setup & tools
	Include the library
	Login
	Create Workspaces
	List the available Processors
	Execute a processor

	Javascript Angular Tutorial
	Setup
	Importing the library
	Using the library

	Reference center
	C# WasdiLib
	Fields
	m_sUser

	Constructors
	Wasdi

	Methods
	Init
	InternalInit
	AddFileToWASDI
	GetDefaultProvider
	SetDefaultProvider
	GetUser
	SetUser
	GetPassword
	SetPassword
	GetActiveWorkspace
	SetActiveWorkspace
	GetSessionId
	SetSessionId
	GetBaseUrl
	SetBaseUrl
	GetIsOnServer
	SetIsOnServer
	GetDownloadActive
	SetDownloadActive
	GetBasePath
	SetBasePath
	GetMyProcId
	SetMyProcId
	GetVerbose
	SetVerbose
	GetParams
	GetParamsAsJsonString
	AddParam
	GetParam
	GetParametersFilePath
	SetParametersFilePath
	CreateSession
	CheckSession
	GetWorkspaceBaseUrl
	SetWorkspaceBaseUrl
	Hello
	GetWorkspaces
	GetWorkspacesNames
	GetWorkspaceIdByName
	GetWorkspaceNameById
	GetWorkspaceOwnerByName
	GetWorkspaceOwnerByWSId
	GetWorkspaceUrlByWsId
	OpenWorkspaceById
	OpenWorkspace
	GetProductsByWorkspace
	GetProductsByWorkspaceId
	GetProductsByActiveWorkspace
	GetProductName
	ImportAndPreprocessWithLinks
	ImportAndPreprocessWithLinks
	ImportAndPreprocess
	ImportAndPreprocess
	AsynchPreprocessProductsOnceDownloaded
	AsynchPreprocessProductsOnceDownloadedWithNames
	GetPath
	InternalGetFullProductPath
	GetSavePath
	GetWorkflows
	AsynchExecuteWorkflow
	ExecuteWorkflow
	GetProcessStatus
	GetProcessesStatus
	GetProcessesStatusAsList
	UpdateStatus
	UpdateStatus
	UpdateProcessStatus
	UpdateProgressPerc
	WaitProcess
	WaitProcesses
	SetPayload
	SetProcessPayload
	RefreshParameters
	AddFileToWASDI
	AsynchAddFileToWASDI
	AddFileToWASDI
	AsynchAddFileToWASDI
	Mosaic
	Mosaic
	Mosaic
	AsynchMosaic
	AsynchMosaic
	AsynchMosaic
	SearchEOImages
	GetFoundProductName
	GetFoundProductName
	GetFoundProductLink
	GetFoundProductLink
	GetFoundProductFootprint
	GetFoundProductFootprint
	AsynchImportProduct
	AsynchImportProduct
	ImportProduct
	ImportProduct
	ImportProduct
	ImportProduct
	ImportProduct
	AsynchImportProduct
	AsynchImportProduct
	AsynchImportProduct
	AsynchImportProductListWithMaps
	AsynchImportProductList
	ImportProductListWithMaps
	ImportProductList
	Subset
	MultiSubset
	MultiSubset
	AsynchMultiSubset
	AsynchMultiSubset
	ExecuteProcessor
	AsynchExecuteProcessor
	ExecuteProcessor
	AsynchExecuteProcessor
	DeleteProduct
	WasdiLog
	GetProcessorPath
	CreateWorkspace
	CreateWorkspace
	DeleteWorkspace
	GetProcessWorkspacesByWorkspaceId
	GetProcessesByWorkspaceAsListOfJson
	GetProcessesByWorkspace
	GetProcessorPayload
	GetProcessorPayloadAsJSON
	GetProductBbox
	DownloadFile
	UploadFile
	CopyFileToSftp
	CopyFileToSftp
	AsynchCopyFileToSftp
	AsynchCopyFileToSftp
	SetSubPid
	PrintStatus

	Java WasdiLib
	Fields
	s_oMapper

	Constructors
	WasdiLib

	Methods
	addFileToWASDI
	addParam
	asynchAddFileToWASDI
	asynchExecuteProcessor
	asynchExecuteProcessor
	asynchExecuteWorkflow
	asynchMosaic
	asynchMosaic
	asynchMosaic
	asynchMosaic
	asynchMosaic
	asynchMosaic
	checkSession
	copyStream
	copyStreamAndClose
	deleteProduct
	downloadFile
	executeWorkflow
	getActiveWorkspace
	getBasePath
	getBaseUrl
	getDownloadActive
	getFoundProductLink
	getFoundProductName
	getFullProductPath
	getIsOnServer
	getMyProcId
	getParam
	getParametersFilePath
	getParams
	getPassword
	getPath
	getProcessStatus
	getProcessorPath
	getProductsByActiveWorkspace
	getProductsByWorkspace
	getSavePath
	getSessionId
	getStandardHeaders
	getStreamingHeaders
	getUser
	getVerbose
	getWorkflows
	getWorkspaceBaseUrl
	getWorkspaceIdByName
	getWorkspaceOwnerByName
	getWorkspaceOwnerByWSId
	getWorkspaces
	httpGet
	httpPost
	importProduct
	importProduct
	importProduct
	init
	init
	internalAddFileToWASDI
	internalExecuteWorkflow
	internalInit
	internalMosaic
	internalMosaic
	internalMosaic
	internalMosaic
	internalMosaic
	internalMosaic
	log
	login
	mosaic
	mosaic
	mosaic
	mosaic
	mosaic
	mosaic
	openWorkspace
	refreshParameters
	searchEOImages
	setActiveWorkspace
	setBasePath
	setBaseUrl
	setDownloadActive
	setIsOnServer
	setMyProcId
	setParametersFilePath
	setPassword
	setProcessPayload
	setSessionId
	setUser
	setVerbose
	setWorkspaceBaseUrl
	subset
	updateProcessStatus
	updateProgressPerc
	updateStatus
	updateStatus
	uploadFile
	waitForResume
	waitProcess

	Matlab WasdiLib
	Methods
	startWasdi
	wAddFileToWASDI
	wAddParam
	wAsynchAddFileToWASDI
	wAsynchCopyFileToSftp
	wAsynchExecuteProcessor
	wAsynchExecuteWorkflow
	wAsynchImportProduct
	wAsynchImportProductList
	wAsynchMosaic
	wAsynchMultiSubset
	wCopyFileToSftp
	wCreateWorkspace
	wDeleteProduct
	wDeleteWorkspace
	wExecuteProcessor
	wExecuteWorkflow
	wGetActiveWorkspace
	wGetBasePath
	wGetBaseUrl
	wGetDownloadActive
	wGetFullProductPath
	wGetMyProcId
	wGetParameter
	wGetParametersFilePath
	wGetParams
	wGetPassword
	wGetPath
	wGetProcessStatus
	wGetProcessesByWorkspace
	wGetProcessorPath
	wGetProcessorPayload
	wGetProcessorPayloadAsJSON
	wGetProductBbox
	wGetProductsByActiveWorkspace
	wGetProductsByWorkspace
	wGetSavePath
	wGetSessionId
	wGetUploadActive
	wGetUser
	wGetVerbose
	wGetWorkflows
	wGetWorkspaceBaseUrl
	wGetWorkspaceIdByName
	wGetWorkspaceOwnerByName
	wGetWorkspaceUrlByWsId
	wGetWorkspaces
	wImportAndPreprocess
	wImportProduct
	wImportProductList
	wLog
	wMosaic
	wMultiSubset
	wOpenWorkspace
	wOpenWorkspaceById
	wPrintStatus
	wRefreshParameters
	wSearchEOImages
	wSetActiveWorkspaceId
	wSetBasePath
	wSetBaseUrl
	wSetDownloadActive
	wSetIsOnServer
	wSetMyProcId
	wSetParameter
	wSetPassword
	wSetPayload
	wSetProcessPayload
	wSetSessionId
	wSetSubPid
	wSetUploadActive
	wSetUser
	wSetVerbose
	wSetWorkspaceBaseUrl
	wSubset
	wUpdateProcessStatus
	wUpdateProgress
	wUpdateProgressPerc
	wUpdateStatus
	wUrlEncode
	wWaitProcess
	wasdiHello
	wasdiLog

	Octave WasdiLib
	Methods
	startWasdi
	addFileToWASDI
	executeWorkflow
	getFullProductPath
	getProcessStatus
	getProductsByWorkspace
	getSavePath
	getWorkflows
	getWorkspaces
	openWorkspace
	setProcessPayload
	updateProcessStatus
	waitProcess

	Python WasdiLib
	Legal Notice
	Methods
	addFileToWASDI
	addParameter
	getParameter
	getParametersDict
	getParametersFilePath
	getSessionId
	getPassword
	getUser
	getVerbose
	getWorkflows
	getFoundProductName
	getProductBBOX
	getProcessorPath
	getProcessesByWorkspace
	getBaseUrl
	setWorkspaceBaseUrl
	getWorkspaceBaseUrl
	setIsOnServer
	getIsOnServer
	setDownloadActive
	getDownloadActive
	setUploadActive
	getUploadActive
	setProcId
	getProcId
	setActiveWorkspaceId
	getActiveWorkspaceId
	refreshParameters
	init
	hello
	getWorkspaces
	createWorkspace
	deleteWorkspace
	getWorkspaceIdByName
	getWorkspaceOwnerByName
	getWorkspaceOwnerByWsId
	getWorkspaceUrlByWsId
	openWorkspaceById
	openWorkspace
	getProductsByWorkspace
	getProductsByWorkspaceId
	getProductsByActiveWorkspace
	getPath
	getFullProductPath
	getSavePath
	getProcessStatus
	deleteProduct
	mosaic
	printStatus
	searchEOImages
	setVerbose
	setParametersDict
	setUser
	setPassword
	setSessionId
	setParametersFilePath
	setBasePath
	getBasePath
	setBaseUrl
	setProcessPayload
	setPayload
	getProcessorPayload
	getProcessorPayloadAsJson
	setSubPid
	saveFile
	updateProgressPerc
	updateProcessStatus
	updateStatus
	waitProcess
	waitProcesses
	_downloadFile
	wasdiLog
	fileExistsOnWasdi
	importProductByFileUrl
	asynchImportProductByFileUrl
	importProduct
	asynchImportProduct
	importProductList
	asynchImportProductList
	asynchAddFileToWASDI
	importAndPreprocess
	asynchExecuteProcessor
	executeProcessor
	_uploadFile
	subset
	multiSubset
	executeWorkflow
	asynchExecuteWorkflow
	asynchMosaic
	copyFileToSftp
	_log
	_getStandardHeaders
	_loadConfig
	_loadParams
	_unzip
	_waitForResume
	_normPath
	_internalAddFileToWASDI
	_internalExecuteWorkflow
	_fileOnNode
	_getDefaultCRS

	Changelog

	Javascript WasdiLib
	Methods
	loadConfig
	loadParameters
	login
	checkBaseUrl
	helloWasdiWorld
	openWorkspace
	createWorkspace
	openWorkspaceById
	getWorkspaces
	getProductsByActiveWorkspace
	executeProcessor
	getProcessStatus
	setProcessPayload
	getDeployed
	publishBand
	getLayerWMS

	Create a config.json file
	Prerequisites
	Recipe

	Python Application Skeleton
	Prerequisites
	Recipe

	Read Parameters
	Prerequisites
	Recipe

	Search Sentinel-1 Images
	Prerequisites
	Recipe

	Search Sentinel-2 Images
	Prerequisites
	Recipe

	Search Sentinel-3 Images
	Prerequisites
	Recipe

	Search Sentinel-5p products
	Prerequisites
	Recipe

	Search Copernicus Marine products
	Prerequisites
	Recipe

	Search ECOSTRESS products
	Prerequisites
	Recipe

	Search ERA5 products
	Prerequisites
	Recipe

	Import Images after a Search
	Prerequisites
	Recipe

	Import And Pre-Process
	Prerequisites
	Recipe

	Run Snap Workflow
	Prerequisites
	Recipe

	Run Another WASDI Application
	Prerequisites
	Recipe

	Save Payload
	Prerequisites
	Recipe

	Get list of S2 tiles in an area of interest
	Prerequisites
	Recipe

	Use Library as client
	Prerequisites
	Recipe

	Change HTTP request timeouts
	Prerequisites
	Recipe

	Add a Data Provider to WASDI
	Introduction
	Getting Started
	Client Filter
	Query Executor, Query Translator and Response Translator
	Query Executor
	QueryTranslator
	ResponseTranslator

	Provider Adapter
	Configuration

	Add Application User Interface controls
	Introduction
	Existing Controls
	WASDI UI definition language
	View Element Factory
	Directive
	Add your Directive to the User Interface
	Add a button to the online editor

	Terms and Conditions
	EULA
	1. Introduction
	2. Signing Up
	3. Our Services
	4. Using WASDI Subscriptions
	5. Purchasing WASDI Subscriptions
	6. Service Hours and Exceptions
	7. Service Guarantees
	8. Technical and Performance
	9. Unlawful or Unauthorized Uses
	10. User-Supplied Applications
	11. Third-Party Applications
	12. Account Termination or Suspension
	13. Changes to Terms of Service
	14. Indemnification
	15. Data Handling and Retention
	16. Disclaimer
	17. Limitation of Liability

	Privacy policy
	What Personal Data We Collect and Why We Collect it
	PART A - COLLECTION OF PERSONAL INFORMATION
	1. Information You Provide
	2. Automatic Information

	PART B – USE OF YOUR INFORMATION
	PART C - DISCLOSURE OF YOUR INFORMATION
	1. To Help with Business Operations
	2. Safety and Security
	3. Legal Requirements
	4. Consent

	PART D - PROTECTING, RETAINING, AND STORING YOUR INFORMATION
	1. PROTECTION
	2. STORAGE
	3. IDENTIFICATION
	4. RETENTION
	5. WITHDRAWAL OF CONSENT

	PART E - ELECTRONIC COMMUNICATIONS
	PART F - ACCESSING AND MODIFYING YOUR PERSONAL AND ACCOUNT INFORMATION
	PART G - GDPR COMPLIANCE
	1. Transfers of Personal Information.
	2. Opt-in

	PART H - CHANGES TO THIS PRIVACY POLICY
	PART I - HOW TO CONTACT OUR PRIVACY OFFICER

	Python Module Index
	Index

